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Increasing evidences have pointed out the relevance of natural killer (NK) cells in
organ-specific and systemic autoimmune diseases. NK cells bear a plethora of activat-
ing and inhibiting receptors that can play a role in regulating reactivity with autologous
cells. The activating receptors recognize natural ligands up-regulated on virus-infected or
stressed or neoplastic cells. Of note, several autoimmune diseases are thought to be linked
to viral infections as one of the first event in inducing autoimmunity. Also, it is conceiv-
able that autoimmunity can be triggered when a dysregulation of innate immunity occurs,
activating T and B lymphocytes to react with self-components. This would imply that NK
cells can play a regulatory role during adaptive immunity; indeed, innate lymphoid cells
(ILCs), comprising the classical CD56+ NK cells, have a role in maintaining or alternating
tissue homeostasis secreting protective and/or pro-inflammatory cytokines. In addition, NK
cells display activating receptors involved in natural cytotoxicity and the activating isoforms
of receptors for HLA class I that can interact with healthy host cells and induce damage
without any evidence of viral infection or neoplastic-induced alteration. In this context, the
interrelationship among ILC, extracellular-matrix components, and mesenchymal stromal
cells can be considered a key point for the control of homeostasis. Herein, we summarize
evidences for a role of NK cells in autoimmune diseases and will give a point of view of
the interplay between NK cells and self-cells in triggering autoimmunity.

Keywords: NK cells, autoreactivity, autoimmunity, NKG2D, DNAM1, regulatory NK cells, mesenchymal stromal
cells, LAIR1

INTRODUCTION
Natural killer (NK) cells are one of the main components of innate
immunity [reviewed in Ref. (1–7)]. It is thought that they provide
the body with a strong defense against microorganisms, such as
viruses and bacteria, together with their efficient action in lim-
iting neoplastic cell growth (1). The functional definition of NK
cells, that is their ability of killing other cells without any prior
stimulation, implies that different cell populations can have the
functional characteristics of NK cells without sharing a common
phenotype. The large majority of the surface markers able to iden-
tify this cell population are actually expressed by other kinds of
lymphocytes leading to an intrinsic difficulty in defining a cell as
an NK cells on the basis of phenotype. As several other compo-
nents of the innate arm of the immune system, NK cells can secrete
cytokines and chemokines. Both activation of cytolytic machin-
ery and secretion of regulating soluble factors are dependent on a
wide number of surface and intracellular receptors that, interact-
ing with the appropriate ligand, can lead to activation or inhibition
of a given cell function. As always in a biological system, the balance
between these opposite signals is responsible for the final outcome
in the microenvironment; thus, NK cells can influence and regu-
late the activities of adaptive immune responses, including T cells
[reviewed in Ref. (8)] and dendritic cells (DCs) (9, 10) through
well identified surface receptors. Recent findings have pointed out
that NK cells may play important roles in autoimmune disorders;
indeed, a genetic correlation between NK cell expression of HLA-I
receptors and autoimmune diseases has been shown. In addition, it

appears that NK cells may play opposite roles with both regulatory
and inducer activity in some autoimmune diseases (11–25).

FUNCTIONAL BALANCE BETWEEN ACTIVATING AND
INHIBITING SIGNALS IN NK CELLS
It is well known that the functional behavior of NK cells can be
regulated by positive and negative signals. A detailed analysis of
positive and negative NK cell receptors is reported elsewhere (6).
Roughly, two main systems of molecular regulators are expressed
on NK cells: the first one is represented by invariant NK cell
receptors for HLA-I while the second one is composed of several
receptors which do not bind HLA-I. The molecular and functional
characteristics of NK cell receptors for HLA-I have been extensively
analyzed (26–28): briefly, killer immunoglobulin-like inhibitory
receptors (KIRs) and C-lectin-type-inhibitory receptors (CLIRs)
can recognize either unique or several HLA-I alleles blocking NK
cell function. Some members of these receptors can be expressed
on NK cells also in an activating isoform that, in the extracellular
portion, is apparently identical to the inhibiting one, indicating
that the same HLA-I allele product can be positively recognized as
well. Furthermore, in some instances, only the activating form of
a member of KIR family has been identified, although it is not still
defined unequivocally its corresponding HLA-I ligand. All these
findings would render the scenario of NK cell receptors for HLA-I
much more complicated than it was supposed in the late 90s (29,
30). Regarding the non-HLA-I receptors present on NK cells, some
are of the activating type such as CD69, NKp30, NKp44, NKp46,
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Poggi and Zocchi NK cells and self-recognition

NKG2D, and DNAM1 (31–33), while others are of the inhibiting
type as LAIR1 (34). It should be noted that the peculiar behavior
of the 2B4 receptor, which can deliver an activating signal when
the signal transducer called SAP/SH2D1A is present in the cyto-
plasm; but in some instances it can deliver an inhibiting signal also
in the presence of this transducer [reviewed in Ref. (35, 36)]. It is
commonly thought that NK cells do not aggress self-cells because
the balance between negative and positive signals is always in favor
of the negative regulation: this balance is broken when self-cells
do not express HLA-I (as during viral infections) or up-regulate
natural ligands for activating receptors as it happens during tumor
transformation (10, 37).

EVIDENCE FOR THE RECOGNITION OF SELF-CELL BY NK
CELLS
Like T lymphocytes, NK cells should not recognize autologous
cells, unless autoreactivity is triggered, potentially leading to an
autoimmune disease. Based on the original definition of NK cells
(1), in principle a self-cell can be killed by NK cells without any
previous stimulation. To avoid this damage, a self-cell is equipped
with two major molecular mechanisms: (a) strong expression of
HLA-I antigens able to deliver inhibiting signals to NK cells; (b)
low levels or lack of expression of surface ligands essential for trig-
gering NK cell activation [reviewed in Ref. (8, 37)]. In the latter
context, also the down-regulation of ligands for co-receptors of
NK cell activation can play a key role in avoiding self-aggression
[reviewed in Ref. (4, 38)].

It is becoming evident that NK cells can recognize self-cells,
which express ligands for activating receptors (8); indeed, NK cells
can aggress both T and antigen presenting cells (APCs) upon trig-
gering with toll-like receptor (TLR) or stimulation with IL2 or
IL15 cytokines. These stimuli lead to the up-regulation of NKG2D
receptor or to the neo-expression of CD69 and NKp44, which in
turn can trigger cytolytic activity and cytokine production (31,
39). On the other hand, several stimuli conceivably acting through
the T cell receptor/CD3 complex, such as phytohemoagglutinin
(PHA), alloantigens, superantigens, and antigenic peptides, can
induce the neo-expression of NKG2D ligands (NKG2DL) on
CD4+ and CD8+ T lymphocytes [reviewed in Ref. (8)]. More-
over, also microorganisms as HIV or Mycobacterium tuberculosis
can trigger NKG2DL expression on CD4+ T cells and T reg-
ulatory (Treg) cells (40, 41). The NKG2DL are represented by
stress-induced MHC class I-related molecules, such as MICA/B,
or the UL16 binding proteins (ULBPs), that are indeed recognized
not only by NK cells but also by a large number of “unconven-
tional” T lymphocytes, as γδ T and NKT cells (11, 12, 42–44).
It is conceivable that even CD8+ memory T cells could be trig-
gered through NKG2DL; all these cell populations can lead, acting
alone or together, to autoreactivity (11). Indeed, the duty of innate
immunity is to clear the body from a specific pathogen or impede
the development of cancer; thus, one can consider autoimmu-
nity as a drawback of a defective lymphoid stress surveillance that
does not limit properly the dissemination of infected or malig-
nant cells and does not maintain tissue integrity, leading to an
altered adaptive immune response. In addition, also the poliovirus
receptor (PVR) or nectin-2, both ligands for DNAM1 (45) can
be expressed on activated or HIV-infected CD4+ T cells possibly

leading to NK cell recognition through the DNAM1 activating
receptor. To our knowledge, no reports are present so far in the lit-
erature on the possible interactions between activated T cells and
NK cell receptors, such as natural cytotoxicity receptors and/or
2B4, although the 2B4 ligand CD48 can be expressed on T, B, and
NK cells [reviewed in Ref. (46)]. It has been shown in a mouse
model that blocking of 2B4 with a 2B4-fusion protein inhibits
the generation of autoimmune hepatitis (AIH) suggesting that a
still undefined 2B4+ lymphocyte subset can be involved (47). This
deserves further studies in humans to better clarify the molecu-
lar mechanisms of NK cell-T lymphocyte cross-talk. Nevertheless,
these findings strongly indicate that NK cells can strikingly regulate
T cell responses influencing adaptive immunity. In the adaptive
immune response, APCs take a key role; indeed, APC can ade-
quately expose the peptide antigen to allow its recognition by T
cells (48). Different kinds of APC, with a reported different capac-
ity of presenting the peptide antigen, can be identified (49–51).
Focusing our analysis on monocyte and monocyte-derived den-
dritic cells (moDCs), it is known that NK cells can actively interact
with these APC that produce interleukin 12 (also known as NK
stimulating factor), which triggers both proliferation and cytolytic
activity of NK cells (52). In turn, NK cells can produce cytokines,
as TNFα, which contribute to DC cell maturation. Several reports
have shown that IL2-activated NK cells can lyse self-APC and that
NK–APC interaction may lead to cytokine production (9, 10, 49,
53, 54). Importantly, this interaction can be mediated by different
activating receptors, including some natural cytotoxicity recep-
tors, and by NKG2D or DNAM1 (9, 54–59). In addition, ligands
for NKG2D can be up-regulated on APC upon stimulation with
TLR-ligands, further supporting the idea that microbial infections
can evoke an autoreactive response that leads to a limited adaptive
immune response. Indeed, the NK cell-mediated elimination of
a given APC before antigen presentation to T cells should con-
ceivably impede an optimal T cell activation [reviewed in Ref.
(10, 49)]; thus, also the second player of the adaptive immune
response can be shut down by NK cells. Finally, on epithelial and
mesodermal-derived cells, as well as on leukocytes, adhesive lig-
ands such as the intercellular adhesion molecule-1 (ICAM1) can be
up-regulated upon triggering by TLR or inflammatory cytokines,
including IFNγ and TNFα (60). The counter receptor of ICAM1
is the lymphocyte function associated antigen-1 (LFA1), which
is a major player of leukocyte-to-cell adhesion and NK cell acti-
vation [reviewed in Ref. (60–64)]. Of course, stress signals can
up-regulate the ligands for NK cell activating receptors also on
this cell population, favoring the NK cell-mediated self-aggression
[reviewed in Ref. (37)]. These findings strongly suggest that the
interaction between NK and self-cells during infection and/or
inflammation should be the rule and not the exception; in addi-
tion, NK cells together with the so-called T cells with NK activity
(primarily NKT and γδT cells) can down-regulate or even impede
the generation of an adaptive immune response (43, 65, 66). It is
conceivable that this interaction does not happen in the periph-
eral blood but within tissues or in the lymph nodes, at least in the
case of organ-specific autoimmune diseases. In this context, sev-
eral evidences have been reported on the presence of NK, NKT, or
γδT lymphocytes, expressing NKG2D and DNAM1, among tis-
sue infiltrating cells during autoimmune diseases; in the same
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tissues NKG2D and/or DNAM1 ligands are detectable. Indeed,
these cells have been found in psoriatic, blistering diseases, and
alopecia areata (AA) skin lesions (16, 22, 67–71), central nervous
system (CNS) in multiple sclerosis (MS) patients (23, 25, 72–78)
and synovial fluid in rheumatoid arthritis (RA) (17, 79–83).

MESENCHYMAL STROMAL CELLS AS A TARGET FOR NK
CELLS
Within tissues NK cells can interact with other cells of innate
immunity as monocyte-derived macrophages and dendritic cells,
mesodermal cells, and extracellular-matrix components (EMCs)
besides NKT and γδT cells (Figure 1). In particular, mesenchy-
mal stromal cells (MSCs) are fibroblast-like cells responsible for
the production of several extracellular-matrix proteins as collagen,
vitronectin, fibronectin, and laminin, through which parenchymal
cells can maintain both shape and functional interactions in a given
organ. Among MSC, mesenchymal stem cells can undergo differ-
entiation to stromal cells typical of connective tissues, including
osteocytes, adipocytes, and chondrocytes [reviewed in Ref. (84)].
According to some experimental findings, the property to differen-
tiate is not limited to cells of mesodermal origin but is also shared
by ectodermal cells as neurons. Although conflicting results are
reported in the literature, it is becoming evident that MSC can be
a source of pluripotent stem cells that can be employed in tissue
repair and regeneration. In addition, a functional common feature
of MSC is the ability of regulating immune responses [Ref. (85);

reviewed in Ref. (84, 86)]. Indeed, it has been shown that MSC
derived from different tissues can down-regulate the activation
of the immune system both in vitro and in vivo murine models.
More importantly, these cells have been proposed as an additional
therapeutic tool to control graft versus host disease (GVHD) in
particular in children (87, 88). MSC can have a role in regulating
autoreactivity through the modulation of cell-to-cell interactions
and the production of extracellular-matrix proteins, cytokines,
and enzymes [Ref. (85); reviewed in Ref. (84)]. The prevailing
point of view of the literature is that MSC have a regulatory inhibit-
ing role on several T and NK cell-mediated activities (87, 89). This
regulation is reported to be mediated by soluble factors, such as
TGFβ, HGF, IDO, and PGE2, which affect lymphocyte functions
upon lymphocyte–MSC interaction [Ref. (85); reviewed in Ref.
(84, 86, 89)]. On the other hand, it appears that NK and T cells can
aggress MSC recognizing NKG2D and DNAM1 ligands, leading to
MSC killing and release of pro-inflammatory cytokines (57, 90–
92). This property is mainly confined to cytokine-activated NK
cells, as ex vivo peripheral blood isolated NK cells are not efficient
in MSC killing (90–93). It is of note that the regulatory role of MSC
on NK cell functions is found in vitro at well defined MSC:NK cell
ratios, ranging from 1:1 to 1:4, while at lower MSC–NK cell ratios
the inhibiting effect is barely or not detectable and an activating
effect is found (90). Due to in vitro culture conditions, at this ratios
MSC grow as a monolayer covering the culture well, with lympho-
cytes seeded on them; thus, both extracellular-matrix proteins, as

FIGURE 1 | Opposite roles of NK cells in autoimmunity. Within
microenvironment the interaction of specific NK cell receptor with
extracellular-matrix can deliver different signals depending on the type of
receptor involved: LAIR1–collagen interaction would lead to inhibition while
VLA4-fibronectin engagement to activation. Depending on the type of NK cell
subset involved, NK cells show the ability of protecting from the occurrence
of autoimmunity (A) through the secretion of immune-regulating cytokines as
IL10, TGFβ, IL5, and IL13. In addition, they can eliminate APC and autoreactive

T cells through the triggering of activating receptors or regulate tissue
homeostasis. On the other hand, NK cells can aggress tissues inducing
inflammation through IFNγ production (B), favoring the maturation of APC
with the consequent triggering of adaptive immune response. Killing and
damaging parenchymal, epithelial, and mesenchymal cells eventually lead to
an altered tissue homeostasis and then to autoimmunity. ILC1-3, NKT, and γδT
cells are involved and may regulate the NK cell–microenvironment
interactions.

www.frontiersin.org February 2014 | Volume 5 | Article 27 | 3

http://www.frontiersin.org
http://www.frontiersin.org/NK_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Poggi and Zocchi NK cells and self-recognition

collagen and fibronectin, and inhibiting cytokines, as TGFβ, can be
concentrated to the MSC surface and in the extracellular medium
facilitating the delivery of an inhibiting signal to lymphocytes. On
the other hand, it is still to be determined what happens during the
interaction of a single MSC and an NK cell: it is conceivable that
within connective tissues MSC–NK interactions take place in the
presence of several extracellular-matrix proteins whose receptors
are expressed on NK cells.

EXTRACELLULAR-MATRIX PROTEIN RECEPTORS ON NK
CELLS AS REGULATORS OF NK CELL FUNCTIONS: FOCUS ON
THE LEUKOCYTE ASSOCIATED Ig-LIKE RECEPTOR 1
Natural killer cells can express different extracellular-matrix pro-
tein receptors as well as matrix metalloproteinases responsible for
matrix degradation (94, 95). Some of these receptors are called
very late antigen (VLA) as they are expressed on long-term cul-
tured cells (Figure 1). However, some are constitutively expressed
at the NK cell surface, such as VLA4 (96–98), and can also be
up-regulated upon stimulation. Several different effects of NK
cell interaction with the matrix proteins fibronectin, laminin, vit-
ronectin, osteopontin, and collagen are reported in the literature
(99–105) and their deep analysis is beyond the scope of this review.
As an example, the engagement of VLA4 can induce activation of
NK cells (98, 106–109). Herein, we focus on the leukocyte associ-
ated Ig-like receptor 1, LAIR1 or CD305 (110, 111), that has been
shown to be a receptor for the Gly-Prol-Hyp common motif of col-
lagens type I, II, III, XIII, XVII, and XXIII (112–115) (Figure 1).
Importantly, LAIR1 is able to deliver an inhibiting signal which
down-regulates NK cell activation through the CD16 receptor,
reducing calcium mobilization, and the cytolytic activity trig-
gered through this molecule (110, 116, 117). The LAIR1-mediated
inhibiting signal occurs through the recruitment, by its cytoplas-
mic tail equipped with immunoreceptor tyrosine inhibiting motif
(ITIM), of the SHIP1 phosphatase; this, in turn, impedes the
phosphorylation and consequent activation of the immunorecep-
tor tyrosine activating motif (ITAM) present in the intracellular
domain of several activating NK cell receptors (2, 118). LAIR1 can
be expressed as different isoforms (LAIR1a, b, and c) or as a soluble
form termed LAIR2; it is conceivable that the interaction of NK
cells with collagens delivers a negative signal that may be impaired
in the presence of soluble (s) LAIR (119–121). No direct evidence
for the interaction of LAIR1 expressed by NK cells and collagen is
reported so far; however, that indeed cross-linking of collagen can
trigger an inhibiting signal in lymphocytes upon LAIR1 engage-
ment has been demonstrated for T and B cells (117, 122–124),
APCs (125, 126), and tumor cells (127–130). Altogether, these find-
ings suggest that collagen produced by MSCs may be involved in
the negative regulation of NK cell function. It is still to be defined
which stimuli can regulate LAIR1 expression on NK cells. It is of
note that LAIR1 is present on almost all leukocytes and it appears
to be associated with the leukocyte common antigen (LCA) tyro-
sine phosphatase (CD45) on NK cells (131); thus, LAIR1 could
regulate NK cell activation by itself and/or through the associ-
ation with CD45. Interestingly, the lack or lower expression of
LAIR1 is associated with an impaired inhibiting signal delivered
upon LAIR1 engagement in B cells isolated from systemic lupus
erythematosus (SLE) patients or B cell chronic leukemia (129, 132)

supporting the idea that down-regulation of LAIR1 expression can
be associated with autoimmune or neoplastic diseases.

NK CELL SUBSETS AND INNATE LYMPHOID CELLS AS
PLAYERS AND REGULATORS OF AUTOIMMUNITY
It is generally thought that autoreactivity and autoimmune dis-
eases are based on an altered adaptive immune response deter-
mining the generation of T and B cell-mediated aggression of
self-cells (133–136). This can be the result of a too strong reaction
to self-antigen due to altered central or peripheral tolerance of
autoreactive T and B cell clones. Treg cells are the main effectors
of tolerance and several evidences have demonstrated that the lack
of an optimal regulation of the adaptive immune response may
be a consequence of their impaired function (137). NK cells can
influence tolerance by eliminating Treg cells (15, 138, 139) or by
acting as regulatory cells themselves (14, 21, 140–144). Indeed,
upon engagement of activating receptors, NK cells can release
several regulating cytokines, such as TGFβ and IL10, which are
considered mediators of tolerance for T cells (5, 145). For instance,
during viral infections, it is conceivable that the interaction of NK
cells with infected self-cells results in the secretion of TGFβ and
IL10, which in turn modulate T and B cell responses; of note,
TGFβ is a strong down-regulator of NK cell-mediated activation
and proliferation (146–149). Interestingly, secretion of functional
TGFβ can be elicited in NK cells upon triggering with soluble
HLA-I molecules that interact with the corresponding counter-
receptors, as CD8 and/or the activating isoforms of KIRs and/or
CLIRs (150, 151). An increment of sHLA-I can be detected in
the sera of patients suffering from different autoimmune diseases;
thus, one could suggest that sHLA-I can down-regulate NK cell
activation. In addition, together with TGFβ, NK cells can release
FasL (152); in turn, soluble FasL, interacting with Fas at the sur-
face of lymphocytes, can lead to their cell death. Thus, the NK
cell-mediated down-regulation of immune response may occur
both by blocking activation with TGFβ and triggering cell death
via FasL–Fas interaction (152). Recently, several distinct NK cell
subsets have been found in different tissues playing opposite func-
tional roles in immune response (Table 1). Briefly, it is commonly
accepted that CD56dull and CD56bright NK cells present in the
peripheral blood have distinct phenotype and functional activities.
Indeed, CD16+KIR+CD56dull NK cells are primarily cytotoxic
while the CD16−KIRdull CD56bright produce huge amounts of
cytokines. It is not clear whether CD56dull posses the plasticity
to become CD56bright and viceversa. Also, human NK cells can
be subdivided on the basis of CD27 and CD11b expression (153,
154): the minority of peripheral NK cells is CD27+ (about 5%),
while this population is more represented in the bone marrow
and further in the spleen and tonsils. CD27+ NK cells, either
CD11b+ or CD11b−, can produce high amounts of cytokines
while among the CD27− NK cells those expressing CD11b are
highly cytotoxic (Table 1). Of note, early during pregnancy the
majority of human decidual lymphocytes are characterized by
unique phenotype: CD16−CD11b−CD56bright either expressing
or not CD27, CD9, and CD151 tetraspanning family members.
Some of these cells can produce IL22 and express immunomodu-
latory molecules as galectin-1 and progestagen-associated protein
14 (155). Importantly, decidual NK (dNK) CD56brightCD27+ cells

Frontiers in Immunology | NK Cell Biology February 2014 | Volume 5 | Article 27 | 4

http://www.frontiersin.org/NK_Cell_Biology
http://www.frontiersin.org/NK_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Poggi and Zocchi NK cells and self-recognition

Table 1 | Features of NK cell subsets in peripheral blood and tissues.

NK cell type Cytotoxic Regulatory/tolerant

Prototype examples Peripheral NK cells Decidual NK cells

Liver NK cells

Tissue infiltrating NK cells

Phenotype CD56dimCD27−CD11b+ CD56brightCD27−CD11b−

CD56brigth or CD27+

Cytokine produced Mainly IFNγ and TNFα Several different cytokines (TGFβ, VEGF, IL10, IL17, IL22)

Main activity Cytolysis Vascular remodeling

Maternal-fetal immune regulation

Tissue localization Peripheral blood, bone marrow Lung, uterus, liver, and gut

Immunity against Viruses and tumor immunosurveillance Maintenance of tissue homeostasis

Role in autoreactivity Triggering or protective effect Mainly protective effect

Schematically, NK cells can show two different functional behaviors (a) cytolytic NK cells (cNK) express high levels of lytic granules and kill spontaneously tumor

cells; (b) regulatory/tolerant NK cells producing several soluble factors which are relevant in regulating tissue homeostasis. Cytotoxic NK cells may exert a key role

in inducing inflammation and they can down-regulate adaptive immunity acting on antigen presenting cells. Regulatory/tolerant NK cells are involved in controlling

tissue homeostasis playing a protective role aimed to maintain and reconstitute the healthy conditions during tissue reparation.

suppress Th17 through an IFNγ-dependent pathway and this
population is lost in women with spontaneous abortion. Addi-
tional NK cell subsets, as NK2, NK3, NKr, and NK22 specifically
involved in the secretion of immune-regulatory cytokines have
been recently identified [reviewed in Ref. (21, 156–160)]. Subsets
with a protective role in autoimmunity are NK2 cells, predomi-
nant in allergic disease, producing high amounts of IL4, IL5, and
IL13 (161), NK3 cells which release IL10 (162), together with
secreting TGFβ NKr cells which are involved in maternal-fetal
immune tolerance (80) while NK22 cells limit inflammation and
protect gut mucosal integrity through the action of IL22. To fur-
ther complicate this scenario, innate lymphoid cells (ILCs, Table 2)
distinct from NK cells, has been identified in mucosa associated
lymphoid tissue (163). To uniform this variegate picture, it has
been suggested to include NK cells within the ILC1 subset and it
has been proposed that the CD56 molecule can be considered
the best marker to distinguishing between NK and other lin-
eage negative lymphoid cells (Table 2) as both kind of cells can
express NKp46 and NKp44 receptors. More importantly, ILC1,
ILC2, and ILC3 subsets express peculiar transcription factors as T-
bet or RORα or RORγT (Table 2) resembling Th1, Th2, or Th17
T cell subsets respectively. Of note, ILC1, ILC2, and ILC3 cells
are present in the gut and display a pro-inflammatory or a pro-
tective role depending on the main cytokine produced (Table 2).
Finally, the NKp46−NKp44+RORγT+CD127+ NK cells show a
protective role in autoimmunity but they may be counteracted
by NKp46+NKp44−RORγT−CD127− NK cells which appear to
be pathogenic through the production of IFNγ (164). Altogether
these findings suggest that both different NK cell subsets and ILC
are primarily involved in either host defense against viruses and
tumor immunosurveillance or in regulating tissue homeostasis
and autoimmunity. Furthermore, it is still to be determined the
“plasticity” of an NK cell or ILC subset as it has been demonstrated
for some T cell subsets [reviewed in Ref. (165, 166)].

NK CELLS AND GENETIC CORRELATION WITH AUTOIMMUNE
DISEASES
Natural killer cell development and function is strictly related to
genetic elements: the genetic background, particularly the defects
and variations of KIR/HLA genotypes, can influence the func-
tion of a given NK cell receptor in target cell recognition and
impair NK cell activation as well as self-tolerance. This influence
is supposed to be related to autoimmunity (167); indeed, several
findings have pointed out associations between risk of systemic
or organ-specific autoimmune diseases and KIR/HLA genotypes,
which indicate that self-tolerance may be broken with inappropri-
ate receptor and ligand pairs or with the interrupted signal balance
(38, 168–177). In general, the presence of an activating recep-
tor for HLA-I associated with the lack or reduction of inhibitory
pairs has been shown in several autoimmune diseases [reviewed in
Ref. (21, 178)] suggesting that an imbalance in favor of activating
receptors for HLA-I is associated with autoimmunity (Figure 2).
This is in line with the findings observed in bone marrow trans-
plantation where the expression of activating KIRs can override
the regulating signals generated through inhibiting KIRs and/or
CLIRs (179–182).

In the following paragraphs, the findings regarding the poten-
tial role of NK cells in different autoimmune diseases will be listed
and discussed.

FEATURES OF NK CELLS IN SKIN DISEASES
Typical autoimmune diseases of the skin are psoriasis, pemphi-
gus vulgaris (PV), and AA; herein, we will not deal with skin
specific manifestations of SLE which can be considered as a
systemic autoimmune disorder with involvement of the skin.
It has been reported that NK cells represent about 5–8% of
infiltrating lymphocyte in psoriatic lesions and these cells are
CD56brightCXCR3+CCR5+ cells (67) expressing the activation
antigen CD69. These cells produce IFNγ after IL2 stimulation; in
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Poggi and Zocchi NK cells and self-recognition

Table 2 | Innate lymphoid cells characteristics.

Characteristic ILC group 1 ILC group 2 ILC group 3

Cell type NK cells (CD56dim/bright NKp46+) IL1R+ ILC3 and LTi cells

ILC1 cells not cytotoxic IL23R+ Some CD56+ cells

Main cytokine

produced

IFNγ IL5 and IL13 triggered through IL25 or

IL33

IL22 and/or IL17
IFNγ

Cytolytic activity Yes (NK cells)

Main transcription

factor expressed

T-bet RORα RORγt
Eomes GATA3

Peculiar phenotypic

features

c-kit− (CD117) c-kit− c-kit+

IL12Rβ2+ IL12Rβ2− IL12Rβ2−

Subunits of IL25R and IL33R

Common phenotypic

features

IL7Rα+ (CD127) IL7Rα+ IL7Rα+

NKRP1a+ (CD161) NKPRP1a+ NKRP1a+

Immune function Viral infections, tumor surveillance Tissue defense/homeostasis Inflammation (IL17+IFNγ+ colitis)

NK IFNγ

Inflammation (ILC1)

Protection (Citrobacter rodendrium ILC3 IL22+)
Gut barrier, wound healing, and epithelial

proliferation

Lymph node formation (IL17+)

Main tissue

localization

Lymphoid organs, uterus, lung,

gut, liver

Lung, adipose tissue, gut Gut lamina propria and cryptopatches,

mesenteric lymph nodes, palatin tonsil

Role in autoreactivity IBD (CD56bright NK cells) Murine models of gut parasitic infections Murine models of colitis

Human IBD Chron disease

Innate lymphoid cells (ILCs) are mucosa associated lymphoid cells which can express some markers of NK cells. It has been proposed to include NK cells within the

ILC1 subset of ILC. NK cells are CD56+ and display strong cytolytic activity while ILC produce a set of different cytokines depending on the subset they belong to.

This dichotomy is not so well defined as some ILC3 cells can express CD56 and thus it is still debate whether NK and some ILC subsets may be inter-converted due

to intrinsic plasticity. IBD, inflammatory bowel disease.

turn IFNγ can upregulate the HLA-I antigens on cheratinocytes
and trigger activation of these cells as well. These findings would
suggest that CD56+ NK cells can favor the development of psori-
asis inducing local inflammation and amplify T cell autoimmune
reactivity. This notion is further supported by the finding that
CD56brightCXCR3+CCR5+ NK cells from psoriatic lesions can
trigger cheratinocytes to produce CCL5 and CXCL10 chemokines
which in turn favor NK cell chemotaxis. Of note, NK cells can
also release IL22, a cytokine mainly produced by Th1 and Th17
T cells (183–185). Cheratinocytes incubated with IL22 can prolif-
erate upon interaction with IL22 receptor (186) and this leads to
parakeratosis and acanthosis, typical features of psoriatic lesions
(187). Furthermore, genomic deletion of the activating receptor
NKG2C is significantly increased in psoriatic patients compared to
healthy matched controls (70, 188, 189). Thus, the lack of recogni-
tion by NK cells of autoreactive T cells may lead to exacerbation of
psoriasis (Figure 2). In this context, the finding that NK cells bear-
ing the inhibiting NK receptor NKG2A are incremented in skin
psoriatic lesions can suggest that the imbalance between NKG2C+

and NKG2A+ NK cells may favor the expansion of autoreactive
T cells (70). In AA, it has been found that CD56+NKG2D+ NK
cells are mainly localized around and within the anagen hair folli-
cles in prominent aggregates possibly leading to aggression of hair

follicles favoring the collapse of the relative immune privilege of
this cutaneous region (69). Finally, in PV it has been reported that
peripheral NK cells display a Th2 type-biased phenotype (190)
as they express high mRNA for IL10, a decrement of IL12Rβ, and
produce IL5 in vivo, exclusively in patients with active disease com-
pared to healthy control. Furthermore, NK cells may function as
APCs for desmoglein three antigens to CD4+ T cells, suggesting
also the possibility of a role for NK cells in inducing the tissue
damage associated to PV (191).

NK CELLS IN MULTIPLE SCLEROSIS
Multiple sclerosis is a CNS inflammatory autoimmune disease
involving as target the myelin associated with neuronal axons; MS
eventually leads to a progressive disability and host death due to
the impairment of vital CNS functions. A potential pathogenic role
of NK cells in MS is supported mainly in relapsing remitting MS
patients (RRMS) [reviewed by Chanvillard et al. (23)]; indeed, NK
cells can directly aggress and damage oligodendrocytes which pro-
duce myelin and NK cells are increased in MS lesions (192, 193).
On the other hand, NK cells can directly affect the life of autore-
active T cells or APCs; in MS patients treated with IFNβ (194)
or with the anti-CD25 antibody daclizumab, there is a selective
expansion and activation of CD56bright NK cells and this correlates
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Poggi and Zocchi NK cells and self-recognition

FIGURE 2 | Schematic representation of the imbalance between
inhibiting and activating receptors on NK cells with the occurrence of
autoimmunity and autoimmune disease. (A) In healthy conditions the
negative signal (in red) delivered through inhibiting receptors for HLA-I can
prevail on the positive signal (in green) induced by the engagement of
activating receptor. The net effect is that no damage to self-cells is
induced, thus there is no autoreactivity. (B,C) The down-regulation of
expression of inhibiting receptors (B) or an increment of activating
receptors (C) determines in any case the prevalence of the activating
signal on the inhibiting one, leading to self-reactivity (indicated as
prevalence of positive signal shown in green). Although not shown, these
two situations may also be found together. (D) In this case the lack of

activating receptors can lead to impaired blocking of autoreactive T cell
clones favoring autoreactivity. For each situation are listed the autoimmune
diseases where an alteration of NK receptors have been reported.
KIR2DS1 and KIR2DS2 are the activating isoforms of the NK receptor for
HLA-C alleles. The KIR2DL1 and KIR2DL2 are the inhibiting isoforms of NK
receptors for HLA-C alleles. NKG2C is the activating isoform of CLIR.
DNAM1 is an activating receptor present on NK cells and MICA and ULBP
are the ligands of the NKG2D surface receptor involved in the recognition
of either infected or tumor transformed cells. AA, Alopecia areata; AS,
ankylosing spondylitis; ATD, autoimmune thyroid disease; MS, multiple
sclerosis; P, psoriasis; PV, pemphigus vulgaris; RA, rheumatoid arthritis;
SS, systemic sclerosis; TID, type I diabetes; V, vasculitis.

with a down-regulation of T cells activation and inhibition of
inflammation (195, 196), suggesting that CD56bright NK cells are
relevant in the control of MS lesions. Importantly, this NK cell
subset appeared to kill T cells through granzyme K and A, which
activate the mitochondrial pathway of apoptosis. The expansion
of CD56bright NK cells can be dependent on their relative higher
expression (compared to CD56dull NK cells) of the intermediate
affinity receptor for IL2. Thus, during MS therapy CD56dull NK
cells should be shut down through the blocking of the CD25 recep-
tor by daclizumab; on the other hand, the expansion of CD56bright

NK cells is favored because daclizumab does not impair their pro-
liferation. Furthermore, in MS the NK2 cell subset is responsible
for the production of IL5 and IL13, which may actively suppress
the activity of self-reactive T cells. These cells disappear in MS
patients when an exacerbation of the disease is present, while they
re-appeared during the remission phase, suggesting that NK2 cells
may be relevant for the disease control (197, 198).

NK CELLS AND TYPE I DIABETES
A reduction of peripheral NK cells has been reported in early diag-
nosed type I diabetes (TID) while the amount of NK cells is mostly
similar to healthy controls in long-standing TID patients; more

importantly, long-standing TID display lower amounts of IFNγ

and lower expression of some natural cytotoxicity receptors (199)
associated with high levels of glycosylated hemoglobin, suggesting
that the impairment of NK cells could be a consequence of the
disease. It is of note that some NK cells have been identified also
within the pancreas, nearby to β pancreatic islets (200), although
this finding has not been confirmed (201). In a murine diabetes
model, it has been reported that NK cell are essential in abolishing
the onset of the disease in NOD mice through a TGFβ-dependent
mechanism that interferes with the activation of β-islet specific T
cells (202, 203).

NK CELLS IN RHEUMATOID ARTHRITIS
It has been reported that NK cells producing IL22 and TNFα are
increased in the synovial fluid of RA patients. It is of note that
culture supernatants from these IL22-producing NK cells can trig-
ger the proliferation of synovial fibroblast-like synoviocytes and
this proliferation is inhibited using anti-IL22 and anti-TNFα anti-
bodies (79). In addition, NK cells from synovial fluid are mainly
CD56bright, express high levels of activation antigens and produce
IFNγ. Furthermore, they can induce monocyte differentiation to
dendritic cells, which in turn can trigger NK cells (204). Altogether
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Poggi and Zocchi NK cells and self-recognition

these findings would suggest an active role of NK cells in sustaining
inflammation in RA patients.

NK CELLS IN INFLAMMATORY BOWEL DISEASE
Inflammatory bowel diseases are represented by ulcerative colitis
(UC) and Chron disease (CD): these two illnesses are character-
ized by the inflammation of gut accompanied by diarrhea and
impairment of absorption of nutrients. It is commonly accepted
that IL17A-producing lymphocytes are extremely relevant in IBD
(205); among the different cell populations residing and coloniz-
ing (Th17, Th1-Th17, NKT, γδT cells) bowel mucosa in UC or
CD, NK cells, and the group 3 of ILC3 (see Table 2) are good
producer of IL17A. These cells can release IL17A immediately
upon engagement with pathogen associated molecular patterns
(PAMPs) and/or cytokines as IL23 (163). More importantly, both
NK cells and ILC3 producing IFNγ and IL17 are abundant in
inflamed CD mucosa while it is debated whether ILC3 secreting
IL22 cells are increased or decreased in IBD (164, 206). It appears
that some ILC of the subgroup 3 (Table 2) are relevant in the
generation of the gut-associated lymphoid tissues and the main-
tenance of healthy conditions. In this context, the fine tuning of
the respective functional role of colitogenic ILC producing IFNγ

(ILC1 and some ILC3) and protective ILC3 secreting IL22 should
be relevant in the generation of IBD.

NK CELLS IN AUTOIMMUNE LIVER DISEASES
Natural killer cells present in the healthy liver are different from
those found in the peripheral blood; indeed, the former are mainly
CD56dull and about a half do not express CD16. Furthermore,
these cells are more prompt to be stimulated with IL2 and, unex-
pectedly, do not lyse autologous hepatocytes, although these cells
do not bear HLA class I antigens [reviewed in Ref. (207)]. Autoim-
mune diseases that hit the liver are mainly represented by AIH,
primary biliary cirrhosis (PBC), and primary sclerosing cholan-
gitis (PSC). AIH is characterized by the progressive destruction
of the liver parenchyma which eventually leads to cirrhosis and
in several instances to hepatic failure and host death. NK cells,
together with γδT cells, play a role in the physiopathology of
the AIH (208, 209). This is confirmed also in a murine model
where administration of poly immune complexes (IC) can induce
a strong production of type I IFN and consequent activation of
liver NK cells leading to liver destruction with similar histopatho-
logic features found in human AIH (210). In PBC, besides IL17+

cells infiltrating damaged bile ducts, hepatic NK cells active against
biliary epithelial cells are found, but it is to be determined whether
they are directly involved in the break of immune tolerance char-
acteristic of this disease (207, 211–213). PSC is characterized on
one hand by the reduced frequencies of some alleles of inhibit-
ing receptors for HLA-I (214) and on the other by the expression
of peculiar alleles of the NKG2D ligand MICA (215); both these
molecular events might regulate the NK cell-mediated immune
interaction with cholangiocytes.

NK CELLS IN LUPUS ERYTHEMATOSUS SYSTEMICUS
Systemic lupus erythematosus is a systemic autoimmune disease
characterized by tissue damage mediated mainly through type II
and III hypersensitivity. Several autoantibodies are present in SLE

patients and it is evident that interaction with cellular antigens
can deliver an activating signal to leukocytes bearing Fcγ recep-
tors, as NK cells and monocyte–macrophages, which eventually
leads to cell damage and inflammatory cytokine production. In
SLE, a reduction of the absolute number of NK cells with an
impaired cytolytic activity is reported (20,216–222) with an imbal-
ance between CD56dull and CD56bright peripheral blood NK cell
subsets (223) characterized by an increase of cytokines production
(220) and a lower lymphokine activated killer cell activity (219).
It is of note that in different systemic autoimmune disorders, as
systemic sclerosis (SSc) and anti-neutrophil cytoplasmic antibody-
associated vasculitis, the number of CD3−CD56+ NK cells are
markedly reduced (224). These findings could be interpreted either
as a consequence or as a pathogenic player of the autoimmune
disorder. In addition, the NK cell subsets found in the periph-
eral blood may be considered as the results of the localization of
effector cells within target tissues, mainly in the case of systemic
autoimmune diseases (24, 76). Recently, it has been reported a
prominent reduction of NK cells expressing the DNAM1 activat-
ing receptor together with an up-regulation of DNAM1 ligand on
plasmocytoid dendritic cells (pDCs) which in turn can mediate
NK cell death through type I IFNα (20). Of note, in the MRL-
lpr/lpr mice model kidney-infiltrating NK cells express activation
antigens and high content of cytotoxic granules, suggesting a pos-
sible role in the kidney tissue damage associated with SLE (20).
The presence of autoantibodies to inhibitory NK cell receptors
and NKG2A (225) can promote excessive NK cell function lead-
ing to increased levels of autoantigens and further stimulating
autoimmune reactions. Of note, in SLE an increase of CS1/CD319
activating receptor of the SLAM family on NK and pDCs could be
detected upon triggering with RNA-IC (225); in addition, expres-
sion of CS1/CD319 on B cells of SLE patients increased. Altogether,
these findings would suggest a role of CS1/CD319 homophylic
interaction among pDC, NK, and B cells in SLE (226, 227). It is
still to be determined whether these interactions are involved in
the pathogenesis of SLE and whether NK cells may be protective
or not in this disease.

AUTHORS’ VIEWPOINT
It is clear that antigen unspecific autoreactivity can occur, before
the onset of an autoimmune disease or in healthy individuals
that will not develop any illness: cytotoxic NK (some ILC1 cells),
NKT, and γδT cells, are the main active players of this phenom-
enon while regulatory/tolerant NK cells and ILC2 and ILC3 are
mainly involved in maintaining tissue homeostasis. The complex
cellular network composed of effector lymphocytes, MSCs, and
APCs is the place where the fate of antigen unspecific reactivity
determines whether adaptive immune responses will take place or
not. One could hypothesize that a strong innate immunity can
impede the generation of adaptive immunity as infectious agents
are cleared before specific T and B lymphocyte can respond. On
the other hand, a low innate response chronically triggers specific
T and B cells favoring the establishment of an autoimmune dis-
ease due to persistence of the antigen. Finally, an adequate innate
response can lead to an optimal B and T cell response that defin-
itively clear the antigen without self-aggression as a consequence
(Figure 3). If this idea is true, to cure an autoimmune disease
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Poggi and Zocchi NK cells and self-recognition

FIGURE 3 | Hypothesis for the generation of adaptive autoreactivity
and autoimmunity. (A) Pathogen associated molecular patterns and/or
damage associated molecular patterns (PAMPs and DAMPs) can activate
innate immunity interacting with receptors expressed on innate
lymphoid cells (NK, ILC subsets, NKT, and γδT lymphocytes). The
activation of innate immunity can be regulated by reciprocal interactions
among mesenchymal stromal cells (MSC), extracellular-matrix
components (EMCs), lymphoid cells, monocyte-derived macrophages
(MΦ), and dendritic cells (MoDCs). (B) Innate response elicited by NK,

ILC subsets, NKT, and γδT lymphocytes interacting with MSC and EMCs
can lead to: (a) rapid elimination of the danger signal that avoids the
triggering of adaptive immune cell response; (b) intermediate innate
response that leads to the triggering of adaptive immunity with the
generation of memory T and B cells; (c) low innate response that
determines the persistence of the danger signal leading to generation of
autoreactive T and B cells. Autoreactive T and B lymphocytes are
controlled by regulatory cells (Treg) but chronic stimulation tends to
break the tolerance leading to autoimmune disease.

one should trigger innate immunity instead of down-regulate
adaptive immunity. However, any therapeutic treatment should
take into account that both innate and adaptive immune responses
can be regulated through MSCs and EMCs besides lymphocytes
and APC.
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