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Deep immune profiling of COVID-19 patients reveals
distinct immunotypes with therapeutic implications
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INTRODUCTION: Many patients with corona-
virus disease 2019 (COVID-19), caused by severe
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection, present with severe respiratory
disease requiring hospitalization andmechanical
ventilation. Although most patients recover, dis-
ease is complex and case fatality can be as high
as 10%. How human immune responses con-
trol or exacerbate COVID-19 is currently poorly
understood, and defining the nature of immune
responses during acute COVID-19 could help
identify therapeutics and effective vaccines.

RATIONALE: Immunedysregulationduring SARS-
CoV-2 infection has been implicated in patho-
genesis, but currently available data remain
limited. We used high-dimensional cytometry
to analyze COVID-19 patients and compare
them with recovered and healthy individuals
and performed integrated analysis of ~200 im-
mune features. These datawere combinedwith
~50 clinical features to understand how the
immunology of SARS-CoV-2 infection may be
related to clinical patterns, disease severity, and
progression.

RESULTS: Analysis of 125 hospitalized COVID-19
patients revealed that although CD4 and CD8
T cells were activated in some patients, T cell
responses were limited in others. In many pa-
tients, CD4 and CD8 T cell proliferation (mea-
sured by KI67 increase) and activation (detected
by CD38 and HLA-DR coexpression) were con-
sistent with antiviral responses observed in other
infections. Plasmablast (PB) responseswere pres-
ent in many patients, reaching >30% of total B
cells, and most patients made SARS-CoV-2–
specific antibodies. However, ~20% of patients
had little T cell activation or PB response com-
paredwith controls. In some patients, responses
declined over time, resembling typical kinetics
of antiviral responses; in others, however, robust
T cell and PB responses remained stable or in-
creased over time. These temporal patternswere
associatedwith specific clinical features.With an
unbiased uniform manifold approximation and
projection (UMAP) approach, we distilled ~200
immune parameters into two major immune
response components and a third pattern lacking
robust adaptive immune responses, thus reveal-
ing immunotypes of COVID-19: (i) Immunotype 1

was associated with disease severity and showed
robust activatedCD4Tcells, a paucity of circulating
follicular helper cells, activated CD8 “EMRAs,” hy-
peractivated or exhausted CD8 T cells, and PBs. (ii)
Immunotype2was characterizedby lessCD4Tcell
activation, Tbet+ effector CD4 and CD8 T cells, and
proliferatingmemoryBcellsandwasnotassociated
withdisease severity. (iii) Immunotype3,whichneg-
atively correlatedwithdisease severity and lacked
obvious activated T andB cell responses, was also
identified.Mortality occurred for patientswith all
three immunotypes, illustrating a complex relation-
ship between immune response and COVID-19.

CONCLUSION: Three immunotypes revealingdif-
ferent patterns of lymphocyte responses were
identified in hospitalized COVID-19 patients.
These threemajor patternsmay each represent
a different suboptimal response associated with
hospitalization and disease. Our findings may
have implications for treatments focused on ac-
tivating versus inhibiting the immune response.▪
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High-dimensional immune response
analysis of COVID-19 patients iden-
tifies three immunotypes. Peripheral
blood mononuclear cell immune
profiling and clinical data were
collected from 60 healthy donors
(HDs), 36 recovered donors (RDs),
and 125 hospitalized COVID-19
patients. High-dimensional flow
cytometry and longitudinal analysis
highlighted stability and fluctuations in
the response. UMAP visualization
distilled ~200 immune features into
two dimensions and identified three
immunotypes associated with clinical
outcomes. cTfh, circulating T follicular
helper cells; EMRA, a subset of
effector memory T cells reexpressing
CD45RA; d0, day 0. UMAP Component 1 ▬
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The UPenn COVID Processing Unit†, Michael R. Betts1,5‡, Nuala J. Meyer14‡, E. John Wherry1,2,3‡

Coronavirus disease 2019 (COVID-19) is currently a global pandemic, but human immune responses to
the virus remain poorly understood. We used high-dimensional cytometry to analyze 125 COVID-19
patients and compare them with recovered and healthy individuals. Integrated analysis of ~200 immune
and ~50 clinical features revealed activation of T cell and B cell subsets in a proportion of patients.
A subgroup of patients had T cell activation characteristic of acute viral infection and plasmablast
responses reaching >30% of circulating B cells. However, another subgroup had lymphocyte activation
comparable with that in uninfected individuals. Stable versus dynamic immunological signatures were
identified and linked to trajectories of disease severity change. Our analyses identified three
immunotypes associated with poor clinical trajectories versus improving health. These immunotypes
may have implications for the design of therapeutics and vaccines for COVID-19.

T
he coronavirus disease 2019 (COVID-19)
pandemic has, to date, caused>23million
infections resulting inmore than 800,000
deaths. After infection with severe acute
respiratory syndrome coronavirus 2

(SARS-CoV-2), COVID-19 patients can experi-
ence mild or even asymptomatic disease or
can present with severe disease requiring
hospitalization and mechanical ventilation.
The case fatality rate can be as high as ~10%
(1). Some severe COVID-19 patients display
acute respiratory distress syndrome (ARDS),
which reflects severe respiratory damage. In
acute respiratory viral infections, pathology
can be mediated by the virus directly, by an
overaggressive immune response, or both
(2–4). However, in severe COVID-19, the
characteristics and role of the immune re-
sponse, as well as how these responses relate
to clinical disease features, remain poorly
understood.

SARS-CoV-2 antigen-specific T cells have
been identified in the central memory (CM),
effector memory (EM), and CD45RA+ effec-
tor memory (EMRA) compartments (5), but
the characteristics of these cells and their role
in infection or pathogenesis remain unclear.
Recovered individualsmore often have evidence
of virus-specific CD4 T cell responses than virus-
specific CD8T cell responses, though preexisting
CD4 T cell responses to other coronaviruses also
are found in a subset of people in the absence
of SARS-CoV-2 exposure (6). Inflammatory
responses—such as increases in interleukin-
6 (IL-6)–producing or granulocyte-macrophage
colony-stimulating factor (GM-CSF)–producing
CD4 T cells in the blood (7) or decreases in
immunoregulatory subsets such as regulatory
T cells (Treg) or gd T cells (8–11)—have been
reported. T cell exhaustion (12, 13) and in-
creased inhibitory receptor expression on
peripheral T cells have also been reported

(7, 14), though these inhibitory receptors are
also increased after T cell activation (15). Al-
though there is evidence of T cell activation in
COVID-19 patients (16), some studies have found
decreases in polyfunctionality (12, 17) or cyto-
toxicity (12), but these changes have not been
observed in other studies (13). How this activa-
tion should be viewed in the context of COVID-
19 lymphopenia (18–20) remains unclear.
Most patients seroconvert within 7 to

14 days of infection, and increased plasma-
blasts (PBs) have been reported (16, 21–23).
However, the role of humoral responses in
the pathogenesis of COVID-19 is still unclear.
Whereas immunoglobulin G (IgG) levels re-
portedly drop slightly ~8weeks after symptom
onset (24, 25), recovered patients maintain
high spike protein–specific IgG titers (6, 26).
IgA levels also can remain high and may cor-
relate with disease severity (25, 27). Further-
more, neutralizing antibodies can control
SARS-CoV-2 infection in vitro and in vivo
(4, 28, 29). Indeed, convalescent plasma that
contains neutralizing antibodies can improve
clinical symptoms (30).However, not all patients
that recover from COVID-19 have detectable
neutralizing antibodies (6, 26), which suggests
a complex relationship between humoral and
cellular response in COVID-19 pathogenesis.
Taken together, this previouswork provokes

questions about the potential diversity of im-
mune responses to SARS-CoV-2 and the rela-
tionship of this diversity to clinical disease.
However, many studies describe small cohorts
or even single patients, thus limiting a com-
prehensive investigation of this diversity. The
relationship of different immune response
features to clinical parameters, as well as the
changes in immune responses and clinical
disease over time, remains poorly understood.
Because potential therapeutics for COVID-19
patients include approaches to inhibit, acti-
vate, or otherwisemodulate immune function,
it is essential to define the immune response
characteristics related to disease features in
well-defined patient cohorts.

Acute SARS-CoV-2 infection in humans
results in broad changes in circulating
immune cell populations

We conducted an observational study of
hospitalized patients with COVID-19 at the
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Fig. 1. Clinical characterization of patient cohorts, inflammatory markers,
and quantification of major immune subsets. (A) Overview of patient cohorts
in our study, including HDs, RDs, and COVID-19 patients. (B) Quantification of
key clinical parameters in COVID-19 patients. Each dot represents a COVID-19
patient; HD ranges are indicated in green. THO, ×1000. (C) Spearman correlation
and hierarchical clustering of indicated features for COVID-19 patients.
(D) Representative flow cytometry plots and (E) frequencies of major immune
subsets. (F) Ratio of CD4 to CD8 T cells. (G) Spearman correlation of CD4:CD8

ratio and clinical lymphocyte count per patient. Dark and light gray shaded
regions represent the clinical normal range and normal range based on study
HDs, respectively. The vertical dashed line indicates the clinical threshold for
lymphopenia. (H) Spearman correlations of indicated subsets with various
clinical features. (E and F) Each dot represents an individual HDs (green),
RDs (blue), or COVID-19 patient (red). Significance was determined by
unpaired Wilcoxon test with Benjamini-Hochberg (BH) correction: *P < 0.05,
**P < 0.01, ***P < 0.001, and ****P < 0.0001.
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University of Pennsylvania (UPenn IRB 808542)
that included 149 adults with confirmed SARS-
CoV-2 infection (i.e., COVID-19 patients) (Fig.
1A). Blood was collected at enrollment (typically
~24 to 72 hours after admission). Additional
samples were obtained from patients who
remained hospitalized on day 7 (D7). Blood
was also collected from nonhospitalized
patients who had recovered from documented
SARS-CoV-2 infection [recovered donors (RDs);
n= 46], as well as from healthy donors (HDs;
n = 70) (UPenn IRB 834263) (Fig. 1A). Clinical
metadata are available from the COVID-19
patients over the course of disease (table S1).
Flow cytometry data from peripheral blood
mononuclear cells (PBMCs), as well as clinical
metadata, were collected from a subset of pa-
tients and donors: COVID-19 patients (n =
125), RDs (n = 36), and HDs (n = 60) (Fig. 1A
and tables S2 to S4).
COVID-19 patients had a median age of 60

and were significantly older than HDs and
RDs (median ages of 41 and 29, respectively),
though the age distributions for all three
cohorts overlapped (Fig. 1A and fig. S1A). For
COVID-19 patients, median body mass index
was 29 (range: 16 to 78), and 68% of these
patients were African American (table S2).
Comorbidities in COVID-19 patients were domi-
nated by cardiovascular risk factors (83% of
the cohort). Nearly 20% of patients suffered
from chronic kidney disease, and 18% had a
previous thromboembolic event. A subset of
patients (18%) were immunosuppressed,
and 7 and 6% of patients were known to have
a diagnosis of cancer or a preexisting pulmo-
nary condition, respectively. Forty-five percent
of the patients were treated with hydroxy-
chloroquine (HCQ), 31% with steroids, and
29%with remdesivir. Eighteen individuals died
during their hospital stay or within 30 days of
admission. The majority of the patients were
symptomatic at diagnosis and were enrolled
~9 days after initiation of symptoms. Approx-
imately 30% of patients required mechani-
cal ventilation at presentation, with additional
extracorporeal membrane oxygenation in
four cases.
As has been reported for other COVID-19

patients (31), this COVID-19 cohort presented
with a clinical inflammatory syndrome.C-reactive
protein (CRP) was elevated in more than 90%
of individuals and lactate dehydrogenase and
D-dimer were increased in themajority, whereas
ferritin was above normal in ~75% of COVID-
19 patients (Fig. 1B and fig. S1B). Similarly,
troponin and NT-proBNP were increased in
some patients (fig. S1B). IL-6 levels, measured
ina subset of patients,werenormal in 5patients,
moderately elevated in 5 patients (6 to 20 pg/ml),
and high in 31 patients (21 to 738 pg/ml) (fig.
S1B). Although white blood cell (WBC) counts
were mostly normal, individual leukocyte pop-
ulationswere altered inCOVID-19 patients (Fig.

1B). A subset of patients had high polymorpho-
nuclear leukocyte (PMN) counts (fig. S1B), as
described previously (8, 32) and in a companion
study (33). Furthermore, approximately half of
theCOVID-19patientswereclinically lymphopenic
(absolute lymphocyte count <1000/ml; Fig. 1B).
By contrast, monocyte, eosinophil, and basophil
countsweremostly normal (Fig. 1B and fig. S1B).
To examine potential associations between

these clinical features, we performed corre-
lation analysis (Fig. 1C and fig. S1C). This
analysis revealed correlations between differ-
ent COVID-19 severitymetrics, as well as clinical
features or interventions associated with more-
severe disease (e.g., D-dimer, vasoactive med-
ication) (Fig. 1C and fig. S1C).WBCs and PMNs
also correlated withmetrics of disease severity
(e.g., APACHE III) as well as with IL-6 levels
(Fig. 1C and fig. S1C). Other relationships were
also apparent, including correlations between
age or mortality and metrics of disease severity
and many other correlations between clinical
measures of disease, inflammation, and comor-
bidities (Fig. 1C and fig. S1C). Thus, COVID-19
patients presented with varied preexisting
comorbidities, complex clinical phenotypes,
evidence of inflammation in many patients,
and clinically altered leukocyte counts.
To begin to investigate immune responses

to acute SARS-CoV-2 infection, we compared
PBMCs of COVID-19 patients, RDs, and HDs
by using high-dimensional flow cytometry.We
first focused on the major lymphocyte pop-
ulations. B cell and CD3 T cell frequencies
were decreased in COVID-19 patients com-
pared with HDs or RDs, reflecting clinical
lymphopenia, whereas the relative frequency
of non-B and non-T cells was correspondingly
elevated (Fig. 1, D andE). Although a numerical
expansion of a non-B, non-T cell type is pos-
sible, loss of lymphocytes likely results in an
increase in the relative frequency of this popu-
lation. This non-B, non-T cell population is also
probed in more detail in the companion study
(33). Examining only CD3 T cells revealed
preferential loss of CD8 T cells compared with
CD4 T cells (Fig. 1, F and G, and fig. S1D); this
pattern was reflected in absolute numbers
estimated from the clinical data, where both
CD4 and CD8 T cell counts in COVID-19 pa-
tients were lower than the clinical reference
range, though the effect was more prominent
for CD8 T cells (49 of 61 individuals with
below-normal levels) than for CD4 T cells (38
of 61 individuals with below-normal levels)
(fig. S1E). These findings are consistent with
previous reports of lymphopenia during COVID-
19 (17–20) but highlight a preferential impact
on CD8 T cells.
We next askedwhether the changes in these

lymphocyte populations were related to clin-
ical metrics (Fig. 1H). LowerWBC counts were
associated preferentially with lower frequen-
cies of CD4 and CD8 T cells and increased

non-T, non-B cells, but not with B cells (Fig.
1H). These lower T cell counts were associated
with clinical markers of inflammation, includ-
ing ferritin, D-dimer, and high-sensitivity CRP
(hsCRP) (Fig. 1H), whereas altered B cell fre-
quencies were not. Thus, hospitalized COVID-
19 patients present with a complex constellation
of clinical features thatmay be associatedwith
altered lymphocyte populations.

SARS-CoV-2 infection is associated with CD8
T cell activation in a subset of patients

We next applied high-dimensional flow cyto-
metric analysis to further investigate lymphocyte
activation and differentiation during COVID-19.
We first used principal components analysis
(PCA) to examine the general distribution of
immune profiles from COVID-19 patients (n =
118), RDs (n = 60), and HDs (n = 36) using
193 immune parameters identified by high-
dimensional flow cytometry (tables S5 and S6).
COVID-19 patients were clearly separated from
RDs and HDs in PCA space, whereas RDs and
HDs largely overlapped (Fig. 2A). We inves-
tigated the immune features that drive this
COVID-19 immune signature. Given the role
of CD8 T cells in response to viral infection,
we focused on this cell type. Six major CD8
T cell populations were examined by using
the combination of CD45RA, CD27, CCR7, and
CD95 cell surface markers to define naïve
(CD45RA+CD27+CCR7+CD95−), central memory
[CD45RA−CD27+CCR7+ (CM)], effector memory
[CD45RA−CD27+CCR7− (EM1), CD45RA−CD27−

CCR7+ (EM2), CD45RA−CD27−CCR7− (EM3)],
and EMRA (CD45RA+CD27−CCR7−) (Fig. 2B)
CD8 T cells. Among the CD8 T cell populations,
there was an increase in the EM2 and EMRA
populations and a decrease in EM1 (Fig. 2C).
Furthermore, the frequency of CD39+ cells was
increased in COVID-19 patients compared with
HDs (Fig. 2D). Although the frequency of PD-1+

cells was not different in the total CD8 popu-
lation (Fig. 2D), it was increased for both
CM and EM1 (fig. S2A). Finally, all major CD8
T cell naïve and memory populations in RDs
were comparable to those in HDs (Fig. 2, C
and D, and fig. S2A).
Most acute viral infections induce prolifer-

ation and activation of CD8 T cells detectable
by increases in KI67 or coexpression of CD38
and HLA-DR (34, 35). There was a significant
increase in KI67+ and also HLA-DR+CD38+

non-naïve CD8 T cells in COVID-19 patients
relative to HDs or RDs (Fig. 2, E and F). In
COVID-19 patients compared with HDs and
RDs, KI67+ CD8 T cells were increased across
all subsets of non-naïve CD8 T cells, including
CM and EM1 populations (fig. S2B). These data
indicate broad T cell activation, potentially
driven by bystander activation and/or homeo-
static proliferation in addition to antigen-driven
activation of virus-specific CD8 T cells. This
activation phenotypewas confirmed byHLA-DR
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Fig. 2. CD8 Tcell subset skewing and activation patterns in COVID-19 patients
and potential links to T cell–driven cytokines. (A) PCA of aggregated flow
cytometry data. (B) Representative flow cytometry plots of the gating strategy
for CD8 T cell subsets. (C) Frequencies of CD8 T cell subsets as indicated.
(D) Frequencies of PD-1+ and CD39+ cells. Frequencies of (E) KI67+ and
(F) HLA-DR+CD38+ cells and representative flow cytometry plots. The green line
in the left panels denotes the upper decile of HDs. (G) (Top) Global viSNE projection
of non-naïve CD8 T cells for all participants pooled, with non-naïve CD8 T cells from

HDs, RDs, and COVID-19 patients concatenated and overlaid. (Bottom) viSNE
projections of expression of the indicated proteins. (H) viSNE projection of non-naïve
CD8 T cell clusters identified by FlowSOM clustering. (I) Mean fluorescence intensity
(MFI) as indicated (column-scaled z-scores). (J) Percentage of non-naïve CD8 T cells
from each cohort in each FlowSOM cluster. Boxes represent interquartile ranges
(IQRs). (C, D, E, F, and J) Each dot represents an individual HDs (green), RDs (blue),
or COVID-19 patient (red). Significance was determined by unpaired Wilcoxon test
with BH correction: *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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and CD38 coexpression that was signifi-
cantly increased for all non-naïve CD8 T cell
subsets (Fig. 2F and fig. S2C). However, the
magnitude of the KI67+ or CD38+HLA-DR+

CD8 T cells varied widely in this cohort. The
frequency of KI67+ CD8 T cells correlated
with the frequency of CD38+HLA-DR+ CD8
T cells (fig. S2D). However, the frequency of
CD38+HLA-DR+ T cells, but not KI67+ CD8
T cells, was elevated in COVID-19 patients who
had concomitant infection with another mi-
crobe butwasnot affected bypreexisting immu-
nosuppression or treatment with steroids (fig.
S2E). Moreover, these changes in CD8 T cell
subsets in COVID-19 patients did not show
clear correlations with individual metrics of
clinical disease such as hsCRP or D-dimer (fig.
S2E), although the frequency of KI67+ CD8
T cells was associated with elevated IL-6 and
ferritin levels. Although CD8 T cell activation
was common, ~20%of patients hadno increase
in KI67+ or CD38+HLA-DR+ CD8 T cells above
the level found in HDs (Fig. 2, E and F). Thus,
although robust CD8 T cell activation was a
clear characteristic ofmanyhospitalizedCOVID-
19 patients, a substantial fraction of patients
had little evidence of CD8 T cell activation in
the blood compared with controls.
To gain more insights, we applied global

high-dimensionalmapping of the 27-parameter
flow cytometry data. A t-distributed stochastic
neighbor embedding (tSNE) representation of
the data highlighted key regions of non-naïve
CD8 T cells found preferentially in COVID-19
patients (Fig. 2G). A major region of this tSNE
map present in COVID-19 patients, but not
HDs or RDs, encompasses CD8 T cells enriched
for expression of CD38, HLA-DR, KI67, CD39,
and PD-1 (Fig. 2G), highlighting the coexpres-
sion of these activation markers with other
features, including CD95 (i.e., FAS). Notably,
although non-naïve CD8 T cells from RDs
were highly similar to those from HDs, subtle
differences existed, including in the lower re-
gion highlighted by T-bet and CX3CR1 (Fig. 2G).
To further define and quantify these differences
between COVID-19 patients and controls, we
performed FlowSOM clustering (Fig. 2H) and
compared expression of 14 CD8 T cell markers
to identify each cluster (Fig. 2I). This approach
identified an increase in cells in several clus-
ters, including clusters 1, 2, and 5 in COVID-19
patients, reflecting CD45RA+CD27−CCR7−

EMRA-like populations that expressedCX3CR1
and varying levels of T-bet (Fig. 2, I and J)
(“EMRA” denotes a subset of effector mem-
ory T cells reexpressing CD45RA). Clusters 12
and 14 contained CD27+HLA-DR+CD38+KI67+

PD-1+ activated, proliferating cells and were
more prevalent in COVID-19 patients (Fig. 2, I
and J, and fig. S2F). By contrast, the central
Eomes+CD45RA−CD27+CCR7− EM1-like clus-
ter 6 and T-bethiCX3CR1+ cluster 11 were de-
creased in COVID-19 patients compared with

HDs (Fig. 2, I and J, and fig. S2F). Thus, CD8
T cell responses in COVID-19 patients were
characterized by populations of activated,
proliferating CD8 T cells in a subgroup of
patients.

SARS-CoV-2 infection is associated with
heterogeneous CD4 T cell responses and
activation of CD4 T cell subsets

We next examined six well-defined CD4 T cell
subsets as above for the CD8 T cells, includ-
ing naïve; EM1, -2, and -3; CM; and EMRA
(Fig. 3A). Given the potential role of antibodies
in the response to SARS-CoV-2 (27, 29), we
also analyzed circulating T follicular helper
(TFH) cells [CD45RA

−PD-1+CXCR5+ (cTFH) (36)]
and activated circulating TFH cells [CD38+

ICOS+ (activated cTFH)], the latter of which
may be more reflective of recent antigen en-
counter and emigration from the germinal
center (37, 38) (Fig. 3A). These analyses re-
vealed a relative loss of naïve CD4 T cells com-
pared with controls, but increased EM2 and
EMRA (Fig. 3B). The frequency of activated but
not total cTFH cells was statistically increased
in COVID-19 patients compared with HDs,
though this effect appeared to be driven by a
subgroup of patients (Fig. 3B). Notably, acti-
vated cTFH frequencies were also higher in
RDs than in HDs (Fig. 3B), perhaps reflect-
ing residual COVID-19 responses in that group.
Frequencies of KI67+ or CD38+HLA-DR+ non-
naïve CD4 T cells were increased in COVID-19
patients (Fig. 3, C and E); however, this change
was not equivalent across all CD4 T cell sub-
sets. The most substantial increases in both
KI67+ and CD38+HLA-DR+ cells were found in
the effector memory populations (EM1, EM2,
EM3) and in cTFH cells (fig. S3, A and B).
Although some individuals had increased ac-
tivation of EMRA, this response was less pro-
nounced. By contrast, PD-1 expression was
increased in all other non-naïve populations
compared with HDs or RDs (fig. S3C). Co-
expression of CD38 and HLA-DR by non-naïve
CD4 T cells correlated with the frequency of
KI67+ non-naïve CD4 T cells (fig. S3D). More-
over, the frequency of total non-naïve CD4
T cells that were CD38+HLA-DR+ correlated
with the frequency of activated cTFH cells
(fig. S3E). In general, the activation of CD4
T cells was correlated with the activation
of CD8 T cells (Fig. 3, D and F). However,
whereas about two-thirds of COVID-19 pa-
tients had KI67+ non-naïve CD4 or CD8 T cell
frequencies above controls, about one-third
had no increase in frequency of KI67+ CD4
or CD8 T cells above that observed in HDs
(Fig. 3, D and F). Moreover, although most
patients had similar proportions of activated
CD4 and CD8 T cells, a subgroup of patients
had disproportionate activation of CD4 T cells
relative to CD8 T cells (Fig. 3, D and F). KI67+

and CD38+HLA-DR+ non-naïve CD4 T cell

frequencies correlated with ferritin and with
APACHE III score (fig. S3F), suggesting a
relationship between CD4 T cell activation
and disease severity. Immunosuppression did
not affect CD4 T cell activation; however,
early steroid administration was weakly as-
sociated with CD4 T cell KI67 expression
(fig. S3F). Together, these data indicate that
T cell activation in COVID-19 patients is sim-
ilar to what has been observed in other acute
infections or vaccinations (37, 39, 40) and
identify patients with high, low, or essen-
tially no T cell response on the basis of KI67+

or CD38+HLA-DR+ expression compared with
control individuals.
Projecting the global CD4 T cell differenti-

ation patterns into the high-dimensional tSNE
space again identified major alterations in the
CD4 T cell response in COVID-19 patients com-
pared with HDs and RDs (Fig. 3G). In COVID-
19 infection, there was a notable increase in
density in tSNE regions that mapped to ex-
pression of CD38, HLA-DR, PD1, CD39, KI67,
and CD95 (Fig. 3G), similar to CD8 T cells. To
gainmore insight into these CD4 T cell changes,
we again used a FlowSOM clustering approach
(Fig. 3, H and I). This analysis identified an
increase in clusters 13 and 14 (representing
populations that express HLA-DR, CD38, PD1,
KI67 and CD95) as well as cluster 15 (contain-
ing Tbet+CX3CR1+ effector-like CD4 T cells) in
COVID-19 patients compared with HDs and
RDs (Fig. 3, I and J, and fig. S3G). By contrast,
this clustering approach identified reduction
in CXCR5+ cTFH-like cells (clusters 2 and 3) in
COVID-19 participants compared with HDs
(Fig. 3, I andH). Collectively, the results of this
multidimensional analysis reveal distinct pop-
ulations of activated and proliferating CD4
T cells that were enriched in COVID-19 patients.
A key feature of COVID-19 is thought to be

an inflammatory response that, at least in some
patients, is linked to clinical disease manifes-
tation (2, 4) and high levels of chemokines and
cytokines, including IL-1RA, IL-6, IL-8, IL-10,
and CXCL10 (11, 41). To investigate the poten-
tial connection of inflammatory pathways to
T cell responses, we performed 31-plex Luminex
analysis on paired plasma and culture super-
natants ofaCD3- andaCD28-stimulatedPBMCs
from a subset of COVID-19 patients and HD
controls. Owing to biosafety restrictions, we
were able to study only eight COVID-19 pa-
tient blood samples that were confirmed nega-
tive for SARS-CoV-2 RNA by polymerase chain
reaction (PCR) (fig. S4A). Half of these COVID-
19 patients had plasmaCXCL10 concentrations
that were ~15 times as high as those of HD
controls, whereas the remainder showed only
a limited increase (fig. S4B). CXCL9, CCL2, and
IL-1RAwere also significantly increased. By con-
trast, chemokines involved in the recruitment of
eosinophils (eotaxin) or activated T cells (CCL5)
were decreased. IL-6 was not elevated in this
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group of patients, in contrast to the subset of
individuals tested clinically (fig. S1B), poten-
tially because IL-6 was measured in the hos-
pital setting, often when systemic inflammation
was suspected. After stimulation in vitro,
PBMCs from COVID-19 patients produced
more CCL2, CXCL10, eotaxin, and IL-1RA than
those from HDs (fig. S4, C and D), and con-
centrations of CXCL10 and CCL2 correlated
between thematched supernatant from stimu-
lated PBMCs and plasma samples (fig. S4E).
Finally, we investigated whether CD8 T cells
from COVID-19 patients were capable of pro-
ducing interferon-g (IFNg) after polyclonal
stimulation. After stimulationwith aCD3 and
aCD28, similar proportions of CD8 T cells
from COVID-19 patients and HD controls
produced IFNg, which suggests that PBMCs
from COVID-19 patients were responsive to
T cell receptor cross-linking (fig. S4, F toH). The
ability of T cells to produce IFNg after stim-
ulation occurred in patients with increases in
KI67 as well as patients with low KI67 (fig. S4,
F to H). Taken together, these data support the
notion that a subgroup of COVID-19 patients
has elevated systemic cytokines and chemokines,
including myeloid-recruiting chemokines.

COVID-19 infection is associated with
increased frequencies of PBs and proliferation
of memory B cell subsets

B cell subpopulations were also altered in
people with COVID-19. Whereas naïve B cell
frequencies were similar in COVID-19 patients
and RDs or HDs, the frequencies of class-
switched (IgD−CD27+) and not–class-switched
(IgD+CD27+) memory B cells were significantly
reduced (Fig. 4A). Conversely, frequencies of
CD27−IgD− B cells and CD27+CD38+ PBs were
often markedly increased (Fig. 4, A and B). In
some cases, PBs represented >30% of circulat-
ing B cells, similar to levels observed in acute
Ebola or dengue virus infections (42, 43). How-
ever, these PB responses were observed in only
about two-thirds of patients, with the remain-
ing patients displaying PB frequencies similar
to those in HDs and RDs (Fig. 4B). KI67 ex-
pression was markedly elevated in all B cell
subpopulations in COVID-19 patients compared
with either control group (Fig. 4C). This obser-
vation suggests a role for an antigen-driven
response to infection- and/or lymphopenia-

driven proliferation. Higher KI67 levels in PBs
may reflect recent generation in COVID-19
patients relative to HDs or RDs. CXCR5 ex-
pression was also reduced on all major B cell
subsets in COVID-19 patients (Fig. 4D). Loss
of CXCR5 was not specific to B cells, however,
as expression was also decreased on non-naïve
CD4 T cells (Fig. 4E). Changes in the B cell
subsets were not associated with coinfection,
immune suppression, or treatmentwith steroids
or other clinical features, though a possible neg-
ative association of IL-6 and PBs was revealed
(fig. S5A). These observations suggest that the
B cell response phenotype of COVID-19 was
not simply due to systemic inflammation.
During acute viral infections or vaccination,

PB responses are transiently detectable in the
blood and correlate with cTFH responses (40).
Comparing the frequency of PBs to the fre-
quency of total cTFH cells or activated cTFH

cells, however, revealed a weak correlation
only with activated cTFH cells (Fig. 4F and
fig. S5, B and C). Furthermore, some patients
had robust activated cTFH responses but PB
frequencies similar to those of controls, whereas
other patients with robust PB responses had
relatively low frequencies of activated cTFH

cells (Fig. 4F and fig. S5, B and C). There was
also an association between PB frequency and
CD38+HLA-DR+ or KI67+ CD4 T cells that
might reflect a role for non-CXCR5+ CD4 T cell
help (fig. S5D), but such a relationship did not
exist for the equivalent CD8 T cell populations
(fig. S5E). Although ~70% of the COVID-19 pa-
tients analyzed in our study made antibodies
against SARS-CoV-2 spike protein [79 of 111
IgG; 77 of 115 IgM (44)], antibody levels did not
correlate with PB frequencies (Fig. 4G and fig.
S5F). The occasional lack of antibody did not
appear to be related to immunosuppression in
a small number of patients (fig. S5G). The lack
of PB correlationwith antibody suggests that a
proportion of these large PB responses were:
(i) generated against SARS-CoV-2 antigens
other than the spike protein or (ii) inflamma-
tion driven and perhaps nonspecific or low
affinity. Notably, anti–SARS-CoV-2 IgG and
IgM levels correlated with the activated, but
not total, cTFH response, which suggests that
at least a proportion of cTFH cells were pro-
viding SARS-CoV-2–specific help to B cells
(Fig. 4, H and I, and fig. S5, H and I). Al-

though defining the precise specificity of the
robust PB populations will require future
studies, these data suggest that at least some
of the PB response is specific for SARS-CoV-2.
Projecting the flow cytometry data for B cells

from HDs, RDs, and COVID-19 patients in
tSNE space revealed a distinct picture of B cell
populations in COVID-19 patients compared
with controls, whereas populations in RDs
and HDs were similar (Fig. 4J and fig. S5J).
The COVID-19 patient B cell phenotype was
dominated by the loss of CXCR5 and IgD com-
paredwith B cells fromHDs and RDs (Fig. 4J).
Moreover, the robust PB response was appar-
ent in the upper right section, highlighted by
CD27, CD38, CD138, and KI67 (Fig. 4J). The
expression of KI67 and CD95 in these CD27+

CD38+CD138+ PBs (Fig. 4J)may suggest recent
generation and/or emigration from germinal
centers. We next asked whether there were
different groups of COVID-19 patients (or HDs
and RDs) with global differences in the B cell
response. We used the Earth mover’s distance
(EMD) metric (45) to calculate similarities
between the probability distributions within
the tSNE map (Fig. 4J) and clustered data so
that individuals with the most-similar distri-
butions grouped together (Fig. 4K). The ma-
jority of COVID-19 patients fell into two distinct
groups (EMD groups 1 and 3; Fig. 4L), sug-
gesting two major immunotypes of the B cell
response. The remainder of the COVID-19 pa-
tients (~25%) clustered with the majority of
the HD and all of the RD controls, supporting
the observation that some individuals had
limited evidence of response to infection in
their B cell compartment. To identify the pop-
ulation differences between HDs, RDs, and
COVID-19 patients, we performed FlowSOM
clustering on the tSNE map and overlaid each
individual EMD group onto this same tSNE
map (Fig. 4, M and N). EMD group 2, con-
tainingmostly HDs and RDs, was enriched for
naïve B cells (IgD+CD27−, cluster 10) and
CXCR5+IgD−CD27+ switched memory cells
(cluster 2), and indeed, clusters 2 and 10 were
statistically reduced in COVID-19 patients
(Fig. 4P). EMD groups 1 and 3 displayed dis-
tinct patterns across the FlowSOM clusters.
B cells from individuals in EMD group 1 were
enriched for FlowSOM clusters 1, 5, and 6, all
of which were increased in COVID-19 patients
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Fig. 3. CD4 T cell activation in a subset of COVID-19 patients is associated
with distinct CD4 T cell subsets. (A) Representative flow cytometry plots of
the gating strategy for CD4 T cell subsets. (B) Frequencies of CD4 T cell
subsets, as indicated. (C) Frequencies of KI67+ cells. The green line in the left
panel denotes the upper decile of HDs. Representative flow cytometry plots are
shown at right. (D) KI67+ cells from non-naïve CD4 T cells versus non-naïve
CD8 T cells. Spearman correlation of COVID-19 patients is shown. (E) Frequencies
of HLA-DR+CD38+ cells. The green line in the left panel denotes the upper
decile of HDs. Representative flow cytometry plots are shown at right.
(F) HLA-DR+CD38+ cells from non-naïve CD4 versus non-naïve CD8 T cells,

Spearman correlation of COVID-19 patients is shown. (G) (Top) Global viSNE
projection of non-naïve CD4 T cells for all participants pooled, with non-naïve
CD4 T cells from HDs, RDs, and COVID-19 patients concatenated and overlaid.
(Bottom) viSNE projections of indicated protein expression. (H) viSNE projection
of non-naïve CD4 T cell clusters identified by FlowSOM clustering. (I) MFI as
indicated (column-scaled z-scores). (J) Percentage of non-naïve CD4 T cells
from each cohort in each FlowSOM cluster. Boxes represent IQRs. (B, C, E, and J)
Each dot represents an individual HDs (green), RDs (blue), or COVID-19 patient
(red). Significance was determined by unpaired Wilcoxon test with BH correction:
*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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(Fig. 4P). FlowSOM clusters 1 and 6 captured
T-bet+memory B cells, whereas FlowSOM clus-
ter 5 contained the CD27+CD38+CD138+KI67+

PBs, all of which were enriched in COVID-19
patients relative to controls (Fig. 4, O and P,
and fig. S5K). By contrast, B cells from COVID-
19 patients in EMD group 3 also showed en-
richment for the PB FlowSOMcluster 5, though
less prominent than for EMD group 1, but the
T-bet+ memory B cell cluster 1 was substan-
tially reduced in EMD group 3. Thus, B cell
responses—most often characterized by ele-
vated PBs, decreases in memory B cell subsets,
enrichment in a T-bet+ B cell subset, and loss
of CXCR5 expression—were evident in many
hospitalized COVID-19 patients. Whether all
of these changes in the B cell compartment
were due to direct antiviral responses is un-
clear. Although there was heterogeneity in the
B cell responses, COVID-19 patients fell into
twodistinct patterns containing activatedB cell
responses and a third group of patients with
little evidence of an active B cell response.

Temporal changes in immune cell populations
occur during COVID-19

A key question for hospitalized COVID-19 pa-
tients is how immune responses change over
time. Thus, we used the global tSNE projec-
tions of overall CD8 T cell, CD4 T cell, and
B cell differentiation states to investigate
temporal changes in these populations be-
tween D0 and D7 of hospitalization (Fig. 5A).
Combining data for all patients revealed con-
siderable stability of the tSNE distributions
between D0 and D7 in CD8 T cell, CD4 T cell,
and B cell populations, particularly for the
key regions of interest discussed above. For
example, for CD8 T cells, the region of the
tSNE map containing KI67+ and CD38+HLA-
DR+ CD8 T cell populations that was enriched
in COVID-19 patients at D0 (Fig. 2) was pre-
served at D7 (Fig. 5A). A similar temporal sta-
bility of CD4 T cell and B cell activation was
also observed (Fig. 5A).
Given this apparent stability between D0

andD7, we next investigated temporal changes
in lymphocyte subpopulations of interest.
Although there were no obvious temporal
changes inmajor phenotypically defined CD4

and CD8 T cell or B cell subsets, including PBs
(Fig. 5D), the frequencies of HLA-DR+CD38+

and KI67+ non-naïve CD4 (Fig. 5B) and KI67+

non-naïve CD8 T cells were statistically in-
creased at D7 compared with D0 (Fig. 5C).
However, in all cases, these temporal pat-

terns were complex, with frequencies of sub-
populations in individual patients appearing
to increase, decrease, or stay the same over
time. To quantify these interpatient changes,
we used a previously described dataset (46) to
define the stability of populations of interest
in healthy individuals over time. We then
used the range of this variation over time to
identify COVID-19 patients with changes in
immune cell subpopulations beyond that ex-
pected in healthy people (see Materials and
methods section). With this approach, ~50% of
patients had an increase in HLA-DR+CD38+

non-naïve CD4 T cells over time, whereas these
cells were stable in ~30% of patients and de-
creased in the remaining ~20% (Fig. 5E). For
KI67+ non-naïve CD8 T cells, there were no
individuals in whom the response decreased.
Instead, this proliferative CD8 T cell response
stayed stable (~70%) or increased (~30%) (fig.
S6A). Notably, for patients in the stable cat-
egory, the median frequency of KI67+ non-
naïve CD8 T cells was ~10%, almost 10 times
as high as the ~1% detected for HDs and RDs
(Figs. 5C and 2E), suggesting a sustained CD8
T cell proliferative response to infection. A sim-
ilar pattern was observed for HLA-DR+CD38+

non-naïve CD8 cells (fig. S6B): Only ~10% of
patients had a decrease in this population,
whereas ~65% were stable and ~25% had an
increase over time. The high and even increas-
ing activated or proliferating CD8 and CD4
T cell responses over ~1 week during acute
viral infection contrasted with the sharp peak
of KI67 in CD8 and CD4 T cells during acute
viral infections, including smallpox vaccina-
tion with live vaccinia virus (47), live attenu-
ated yellow fever vaccine YFV-17D (48), acute
influenza virus infection (49), and acute HIV
infection (35). Approximately 42% of patients
had sustained PB responses, at high levels
(>10% of B cells) in many cases (Fig. 5F).
Thus, some patients displayed dynamic changes
in T cell or B cell activation over 1 week in the

hospital, but other patients remained stable. In
the latter case, some patients remained stable
without clear activation of key immune popula-
tions, whereas others had stable T and/or B cell
activation or numerical perturbation (fig. S6C).
We next asked whether these T and B cell

dynamics are related to clinical measures of
COVID-19. To do this, we correlated changes
in immune features from D0 to D7 with clin-
ical information (Fig. 5G). These analyses re-
vealed distinctive correlations. Decreases in
all populations of responding CD4 and CD8
T cells (HLA-DR+CD38+, KI67+, and activated
cTFH) between D0 and D7 were positively
correlatedwith PMNandWBCcounts, suggest-
ing a relationship between T cell activation and
lymphopenia. Furthermore, decreases in CD4
and CD8HLA-DR+CD38+ T cells positively cor-
relatedwithAPACHE III score.However, stable
HLA-DR+CD38+ CD4 T cell responses corre-
lated with coagulation complications and fer-
ritin levels. Whereas decreasing activated cTFH
cells over time was related to coinfection, the
opposite pattern was observed for PBs. In-
creases in proliferating KI67+ CD4 and CD8
T cells over time were positively correlated to
increasing anti–SARS-CoV-2 antibody from
D0 to D7, suggesting that some individuals
might have been hospitalized during the ex-
pansion phase of the antiviral immune re-
sponse (Fig. 5G). Finally, neither remdesivir
nor HCQ treatment correlated with any of
these immune features (Fig. 5G). When we
examined categorical rather than continuous
clinical data, we found that 80% of patients
with decreasing PBs over time had hyperlip-
idemia, whereas only 20% of patients with
increasing PBs over time had this comorbid-
ity (fig. S6D). All patients who had decreasing
CD38+HLA-DR+ CD8 T cells from D0 to D7
were treated with early vasoactive medication
or inhaled nitric oxide, whereas these treat-
ments were less common for patients with
stable or increasing CD38+HLA-DR+ CD8T cells
(fig. S6E). By contrast, vasoactive medication,
inhaled nitric oxide, and early steroid treat-
ment were equally common in patients with
increasing or decreasing PBs (fig. S6D). Sim-
ilar patterns were apparent for other T cell
populations and these categorical clinical data
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Fig. 4. Deep profiling of COVID-19 patient B cell populations reveals robust
PB populations and other B cell alterations. (A) Gating strategy and
frequencies of non-PB B cell subsets. (B) Representative flow cytometry plots
and frequencies of PBs. The green line in the right panel denotes the upper
decile of HDs. (C) Representative flow cytometry plots and frequencies of
KI67+ B cells. (D) (Left) Representative histograms of CXCR5 expression; (right)
CXCR5 geometric MFI (GMFI) of B cell subsets. (E) CXCR5 GMFI of non-naïve
CD4 T cells and cTFH cells. (F) Spearman correlation between PBs and activated
cTFH cells. (G) Spearman correlation between PBs and anti–SARS-CoV-2 IgG.
(H and I) Spearman correlation between activated cTFH cells and anti–SARS-CoV-2
(H) IgM and (I) IgG. (J) (Top) Global viSNE projection of B cells for all
participants pooled, with B cell populations of each cohort concatenated and

overlaid. (Bottom) viSNE projections of expression of the indicated proteins.
(K) Hierarchical clustering of EMD using Pearson correlation, calculated pairwise
for B cell populations for all participants (row-scaled z-scores). (L) Percentage
of cohort in each EMD group. (M) Global viSNE projection of B cells for all
participants pooled, with EMD groups 1 to 3 concatenated and overlaid.
(N) B cell clusters identified by FlowSOM clustering. (O) MFI as indicated
(column-scaled z-scores). (P) Percentage of B cells from each cohort in each
FlowSOM cluster. Boxes represent IQRs. (A to F and P) Dots represent individual
HDs (green), RDs (blue), or COVID-19 (red) participants. (A to E and P)
Significance was determined by unpaired Wilcoxon test with BH correction:
*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. (G to I) The black
horizontal line represents the positive threshold.
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Fig. 5. Temporal relationships between immune responses and disease
manifestation. (A) Global viSNE projection of non-naïve CD8 T cells, non-naïve
CD4 T cells, and B cells for all participants pooled, with cells from COVID-19
patients at D0 and D7 concatenated and overlaid. Frequencies of (B) KI67+ and
HLA-DR+CD38+ CD4 T cells, (C) KI67+ and HLA-DR+CD38+ CD8 T cells, or
(D) PBs as indicated for HDs (green), RDs (blue), or COVID-19 patients (red),

with paired samples at D0 and D7 indicated by connecting lines. Significance
was determined by paired Wilcoxon test: *P < 0.05, **P < 0.01, ***P < 0.001,
and ****P < 0.0001. Longitudinal patterns (see Materials and methods) of
(E) HLA-DR+CD38+ CD4 T cells or (F) PBs in COVID-19 patients shown as
frequency and representative flow cytometry plots. (G) Spearman correlations of
clinical parameters with longitudinal fold changes in immune populations.
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(fig. S6F). Thus, the trajectory of change in the
T and B cell response in COVID-19 patients
was strongly connected to clinical metrics
of disease.

Identifying immunotypes and relationships
between circulating B and T cell responses
with disease severity in COVID-19 patients

To further investigate the relationship between
immune responses and COVID-19 trajectory,
we stratified the COVID-19 patients (n = 125)
into eight different categories, according to
the NIH Ordinal Severity Scale, ranging from
COVID 1 (death) and COVID 2 (requiring
maximal clinical intervention) to COVID 8 (at
homewith no required care) (Fig. 6A).We then
asked how changes in T and B cell populations
defined above on D0 were related to disease
severity. More severe disease was associated
with lower frequencies of CD8 and CD4 T cells,
with a greater effect on CD8 T cells in less
severe disease (Fig. 6B). Taking all patients
together, there were no statistically significant
changes in the major T cell and B cell subsets
related to disease severity, though some trends
were present (fig. S7, A to C). By contrast, HLA-
DR+CD38+ CD8 T cells as well as both KI67+

andHLA-DR+CD38+CD4Tcellswere increased
in patients with more severe disease (fig. S7,
D and E).
There were two challenges with extracting

meaning from these data. First, there was
considerable interpatient heterogeneity for
each of these immune features related to dis-
ease severity score. Second, these binary com-
parisons (e.g., one immune subset versus one
clinical feature) do not make full use of the
high-dimensional information in this dataset.
Thus, we next visualized major T and B cell
subpopulation data as related to clinical dis-
ease severity score (Fig. 6C). Data were clus-
tered according to immune features and then
overlaid with the disease severity score over
time for each patient. This analysis revealed
groups of patients with similar composite im-
mune signatures of T and B cell populations
(Fig. 6C). When individual CD8 T cell, CD4
T cell, or B cell populations were examined, a
similar concept of patient subgroups emerged
(fig. S7, F, G, and H). These data suggested the

idea of immunotypes of COVID-19 patients on
the basis of integrated responses of T and
B cells, though some individual cell types
and/or phenotypes separated patients more
clearly than others.
These approaches provided insight into po-

tential immune phenotypes associated with
patients with severe disease but were hin-
dered by the small number of manually se-
lected T or B cell subsets or phenotypes. We
therefore next employed uniform manifold
approximation and projection (UMAP) to dis-
till the ~200 flow cytometry features (tables
S5 and S6) representing the immune land-
scape of COVID-19 in two-dimensional space,
creating compact meta-features (or compo-
nents) that could then be correlated with
clinical outcomes. This analysis revealed a
clear trajectory from HDs to COVID-19 pa-
tients (Fig. 6D), which we centered and aligned
with the horizontal axis (component 1) to
facilitate downstream analysis (Fig. 6E). An
orthogonal vertical axis coordinate (compo-
nent 2) captured nonoverlapping aspects of
the immune landscape. We next calculated
the mean of component 1 for each patient
group, with COVID-19 patients separated by
severity score (Fig. 6E). The contribution of
component 1 clearly increased in a stepwise
manner with increasing disease severity
(Fig. 6F). Notably, RDs were subtly positioned
between HDs and COVID-19 patients. Com-
ponent 1 remained an independent predictor
of disease severity (P = 5.5 × 10−5) even after
adjusting for the confounding demographic
factors of age, sex, and race.
We next investigated how the UMAP com-

ponents were associated with individual im-
mune features (tables S5 and S6). UMAP
component 1 captured immune features, in-
cluding the relative loss of CD4 and CD8 T cells
and increase in the ratio of non-B and non-T
cells to T and B cells (Fig. 6G). PBs also as-
sociated with component 1 (Fig. 6G). Other
individual B cell features were differential-
ly captured by UMAP components 1 and 2.
Component 1 contained a signal for T-bet+ PB
populations (table S5), whereas component 2
was enriched for T-bet+ memory B cells and
CD138+ PB populations (table S6). Activated

HLA-DR+CD38+ andKI67+CD4andCD8Tcells
had contributions to both components, with
these features residing in the upper right cor-
ner of the UMAP plot (Fig. 6, G and H, and fig.
S8, A to D). By contrast, T-bet+ non-naïve CD8
T cells were strongly associated with compo-
nent 2, whereas T-bet+ non-naïve CD4 T cells
were linked to component 1 (Fig. 6G and tables
S5 and S6). Eomes+ CD8 or CD4 T cells were
both associated with component 2 and nega-
tively associated with component 1 (Fig. 6G
and tables S5 and S6).
We next took advantage of the FlowSOM

clustering in Figs. 2 to 4 that identified in-
dividual immune cell types most perturbed in
COVID-19 patients and linked these FlowSOM
clusters to UMAP components (Fig. 6H). For
non-naïve CD8 T cells, FlowSOM cluster 11,
which contained T-bet+CX3CR1+ but non-
proliferating effector-like cells, was positively
correlated with UMAP component 2 and neg-
atively correlated with component 1 (Fig. 6H).
By contrast, FlowSOM cluster 14, which con-
tained activated, proliferating PD-1+CD39+

cells that might reflect either recently gen-
erated effector or exhausted CD8 T cells (50),
was strongly associated with UMAP compo-
nent 1 (Fig. 6H). For CD4 T cells, FlowSOM
cluster 14, containing activated, proliferating
CD4 T cells, was captured by both UMAP com-
ponents, whereas a second activated CD4 T cell
population that also expressed CD95 (FlowSOM
cluster 13) was captured by only UMAP com-
ponent 1 (Fig. 6H). In addition, component
1 was negatively correlated with CD4 T cell
FlowSOM clusters 2 and 3 that contained
cTFH cells (Fig. 6H). Finally, for B cells, the
FlowSOM cluster of T-bet+CD138+ PBs (clus-
ter 5) was positively correlated with com-
ponent 1, whereas the T-bet−CD138+ cluster 3
was negatively correlated with this same com-
ponent (Fig. 6H). Locations in the UMAP im-
mune landscape were dynamic, changing from
D0 to D7 for both components, consistent with
the data in Fig. 5 and fig. S9, A to F. The most
dynamic changes in component 1 were asso-
ciated with the largest increases in IgM anti-
body levels (fig. S9G).
Given the association of UMAP component

1 with disease severity, we next examined the

Mathew et al., Science 369, eabc8511 (2020) 4 September 2020 12 of 17

Fig. 6. High-dimensional analysis of immune phenotypes with clinical data
reveals distinct COVID-19 patient immunotypes. (A) NIH ordinal scale for
COVID-19 clinical severity. (B) Frequencies of major immune subsets.
Significance was determined by unpaired Wilcoxon test with BH correction:
*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. (C) Heatmap of
indicated immune parameters by row; donor type, disease severity, and
mortality are indicated across the top. (D) UMAP projection of aggregated
flow cytometry data. (E) Transformed UMAP projection. Density contours were
drawn separately for HDs, RDs, and COVID-19 patients (see Materials and
methods). (F) Bars represent mean of UMAP component 1. Dots represent
individual participants; bars are color-coded by participant group and/or severity
score. (G) Density contour plots indicating variation of specified immune

features across UMAP component coordinates. Relative expression (according to
heat scale) is shown for both individual patients (points) and overall density
(contours). Spearman’s rank correlation coefficient (r) and P value for each
feature versus component 1 (C1) and component 2 (C2) are shown. (H) (Left)
Spearman correlation between UMAP components 1 and 2 and FlowSOM
clusters. (Right) Select FlowSOM clusters and their protein expression.
(I) Spearman correlation between UMAP components 1 and 2 and clinical
metadata. (J) Heatmap of immune parameters used to define immunotype 3
indicated by row; disease severity and mortality are indicated across the top.
(K) (Left) Transformed UMAP projection; patient status for immunotype 3
indicated by color. (Right) Spearman correlation between immunotype 3 and
disease severity, mortality, and UMAP components.
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connections between UMAP components and
individual clinical features. UMAP compo-
nent 1 correlated with several clinical mea-
surements of inflammation (e.g., ferritin, hsCRP,
IL-6), coinfection, organ failure (APACHE III),
and acute kidney disease and renal insuffi-
ciency (Fig. 6I). However, although D-dimer
level was elevated, this feature did not corre-
late with UMAP component 1, whereas co-
agulation complication did (Fig. 6I). Several
antibody features also correlated with com-
ponent 1, consistent with some of the immune
features discussed above. By contrast, compo-
nent 2 lacked positive correlation to many
of these clinical features of disease and was
negatively correlated to eosinophil count, non-
steroidal anti-inflammatory drug (NSAID) use,
and subsequent treatment with remdesivir
(Fig. 6I). UMAP component 1, not compo-
nent 2, also correlated with mortality, although
there were clearly patients with high compo-
nent 2 but low component 1 who died from
COVID-19 (Fig. 6E). These data indicate that
the immune features captured by UMAP com-
ponent 1 have a strong relationship to many
features of disease severity, whereas other
features of immune dynamics during COVID-19
captured by UMAP component 2 have a distinct
relationship with clinical disease presentation.
More-positive values in UMAP components

1 or 2 captured mainly signals of change or
differences in individual immune features in
COVID-19 patients compared with HDs and
RDs. UMAP component 1 captured an immu-
notype (immunotype 1) characterized by effec-
tor or highly activated CD4 T cells, low cTFH
cells, some CD8 EMRA-like activation, possi-
bly hyperactivated CD8 T cells, and Tbet+ PBs,
whereas component 2 (immunotype 2) cap-
tured Tbetbright effector-like CD8 T cells, had
less robust CD4 T cell activation, and had some
features of proliferating B cells (Fig. 6G and
fig. S8). However, the data presented in Figs.
1 to 5 also suggested a subset of patients with
minimal activation of T and B cell responses.
To investigate this immune signature, we
identified 20 patients who had responses
more similar to those of HDs and RDs for
five activated or responding B and T cell pop-
ulations (Fig. 6J, middle, and fig. S10). If
UMAP components 1 and 2 captured two dis-
tinct immunotypes of patient responses to
SARS-CoV-2 infection, this group of 20 pa-
tients represents a third immunotype. Immuno-
type 3 was negatively associated with UMAP
components 1 and 2 and negatively associated
with disease severity, which suggests that a less
robust immune response during COVID-19 was
associated with less severe pathology (Fig. 6K
and fig. S10), despite the fact that these patients
were hospitalized with COVID-19. These data
further emphasize the different ways in which
patients can present with and possibly die from
COVID-19. These patterns may be related to

preexisting conditions in combination with im-
mune response characteristics. It is likely that
additional immune features, such as compre-
hensive serum cytokine measurements, will
improve thismodel. Nevertheless, the current
computational approach integrating deep im-
mune profiling with disease severity trajec-
tory and other clinical information revealed
distinct patient immunotypes linked to dis-
tinct clinical outcomes (fig. S11).

Discussion

The T and B cell response to SARS-CoV-2 in-
fection remains poorly understood. Some
studies suggest that an overaggressive immune
response leads to immunopathology (51),
whereas others suggest that the mechanism
is T cell exhaustion or dysfunction (12–14).
Autopsies revealed high virus levels in the
respiratory tract and other tissues (52),
suggesting ineffective immune responses.
Nevertheless, nonhospitalized individuals
who recovered from COVID-19 had evidence
of virus-specific T cell memory (53). SARS-
CoV-2–specific antibodies are also found in
convalescent individuals, and patients are
currently being treated with convalescent
plasma therapy (30, 54). However, COVID-
19 patients in intensive care units (ICUs)
have SARS-CoV-2–specific antibodies (30),
raising the question of why patients with
these antibody responses are not controlling
disease. In general, these previous studies
have reported on single patients or small
cohorts and thus do not achieve compre-
hensive deep immune profiling of larger
numbers of hospitalized COVID-19 patients.
Such knowledge would address the critical
question of whether there is a common pro-
file of immune dysfunction in critically ill
patients. Such data would also help guide
testing of therapeutics to enhance, inhibit,
or otherwise tailor the immune response
in COVID-19 patients.
To elucidate the immune response patterns

of hospitalized patients with COVID-19, we
studied a cohort of ~125 patients. We used
high-dimensional flow cytometry to perform
deep immune profiling of individual B and
T cell populations, with temporal analysis
of immune changes during infection, and
combined this profiling with extensive clin-
ical data to understand the relationships be-
tween immune responses to SARS-CoV-2 and
disease severity. This approach led us to sev-
eral key findings. First, a defining feature
of COVID-19 in hospitalized patients is het-
erogeneity of the immune response. Many
COVID-19 patients displayed robust CD8
T cell and/or CD4 T cell activation and pro-
liferation and PB responses, though a substan-
tial subgroup of patients (~20%) had minimal
detectable responses compared with controls.
Furthermore, even within those patients who

mounted detectable B and T cell responses
during COVID-19, the immune characteristics
of the responses were heterogeneous. With the
use of deep immune profiling, we identified
three immunotypes in hospitalized COVID-19
patients: (i) robust activation and prolifera-
tion of CD4 T cells, relative lack of cTFH cells,
modest activation of EMRA-like cells, highly
activated or exhausted CD8 T cells, and a
signature of T-bet+ PBs (immunotype 1); (ii)
Tbetbright effector-like CD8 T cell responses,
less robust CD4 T cell responses, and Ki67+

PBs and memory B cells (immunotype 2); and
(iii) an immunotype largely lacking detectable
lymphocyte response to infection, which sug-
gests a failure of immune activation (immuno-
type 3). UMAP embedding further resolved
the T cell–activation immunotype, suggesting
a link between CD4 T cell activation, immuno-
type 1, and increased severity score. Although
differences in age and race existed between
the cohorts and could affect some immune
variables, the major UMAP relationships were
preserved even after correcting for these var-
iables. Thus, these immunotypes may reflect
fundamental differences in the ways in which
patients respond to SARS-CoV-2 infection.
A second key observation from these studies

was the robust PB response. Some patients
had PB frequencies rivaling those found in
acute Ebola or dengue infection (34, 42, 43, 55).
Furthermore, blood PB frequencies are typi-
cally correlated with blood-activated cTFH re-
sponses (40). However, in COVID-19 patients,
this relationship between PBs and activated
cTFH cells was weak. The lack of relationship
between these two cell types in this disease
could be due to T cell–independent B cell re-
sponses, lack of activated cTFH cells in periph-
eral blood at the time point analyzed, or lower
CXCR5 expression observed across lympho-
cyte populations, making it more difficult to
identify cTFH cells. Activated (CD38+HLA-
DR+) CD4 T cells could play a role in providing
B cell help, perhaps as part of an extrafollicular
response, but such a connection was not
robust in the current data. Most ICU patients
made SARS-CoV-2–specific antibodies, sug-
gesting that at least part of the PB response
was antigen specific. Indeed, the cTFH re-
sponse did correlate with antibodies, which
indicates that at least some of the humoral
response is targeted against the virus. Future
studies will be needed to address the antigen
specificity, ontogeny, and role in pathogenesis
for these robust PB responses.
A notable feature of some patients with

strong T and B cell activation and proliferation
was the durability of the PB response. This
T and B cell activation was interesting con-
sidering the clinical lymphopenia in many
patients. However, this lymphopenia was pref-
erential for CD8 T cells. It may be notable that
such focal lymphopenia preferentially affecting
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CD8 T cells is also a feature of acute Ebola in-
fection ofmacaques and is associatedwithCD95
expression and severe disease (55). Indeed,
CD95 was associatedwith activated T cell clus-
ters in COVID-19. Nevertheless, the frequency
of the KI67+ or CD38+HLA-DR+ CD8 and CD4
T cell responses in COVID-19 patients was sim-
ilar in magnitude to those of other acute viral
infections or live attenuated vaccines in hu-
mans (47–49). However, during many acute
viral infections, the period for peak CD8 or CD4
T cell responses and the window for PB detec-
tion in peripheral blood are relatively short
(43, 56, 57). The stability of CD8 and CD4 T cell
activation and PB responses during COVID-19
suggests a prolonged period of peak immune
responses at the time of hospitalization or per-
haps a failure to appropriately down-regulate
responses in some patients. These ideas would
fit with an overaggressive immune response
and/or “cytokine storm” (2) in this subset of
patients. Indeed, in some patients, we found
elevated serum cytokines and that stimulation
of T cells in vitro provoked cytokines and che-
mokines capable of activating and recruiting
myeloid cells. A key question will be how to
identify these patients for selected immune-
regulatory treatment while avoiding treating pa-
tientswith alreadyweak T andB cell responses.
An additional major finding was the ability

to connect immune features to disease severity
at the time of sampling as well as to the tra-
jectory of disease severity change over time.
Using correlative analyses, we observed rela-
tionships between features of the different
immunotypes, patient comorbidities, and clin-
ical features of COVID-19. By integrating ~200
immune features with extensive clinical data,
disease severity scores, and temporal changes,
we built an integrated computational model
that connected patient immune response
phenotype to disease severity. This UMAP
embedding approach allowed us to connect
these integrated immune signatures to specific
clinically measurable features of disease. The
integrated immune signatures captured by
components 1 and 2 in this UMAP model pro-
vided support for the concept of immunotypes
1 and 2. These analyses suggested that im-
munotype 1—composed of robust CD4 T cell
activation, paucity of cTFH cells with prolifer-
ating effector or exhausted CD8 T cells, and
T-bet+ PB involvement—was connected to
more-severe disease, whereas immunotype
2—characterized by more traditional effector
CD8 T cells subsets, less CD4 T cell activation,
and proliferating PBs and memory B cells—
was better captured by UMAP component 2.
Immunotype 3, in which minimal lympho-
cyte activation response was observed, may
represent ~20% of COVID-19 patients and is a
potentially important scenario to consider for
patients who may have failed to mount a
robust antiviral T and B cell response. This

UMAP integrated modeling approach could
be improved in the future with additional
data on other immune cell types and/or com-
prehensive data for circulating inflammatory
mediators for all patients. Nevertheless, these
findings provoke the idea of tailoring clinical
treatments or future immune-based clinical
trials to patients whose immunotype suggests
greater potential benefit.
Respiratory viral infections can cause pa-

thology as a result of an immune response that
is too weak, resulting in virus-induced pathol-
ogy, or too strong, leading to immunopathology
(58). Our data suggest that the immune re-
sponse of hospitalized COVID-19 patients may
fall across this spectrum of immune response
patterns, presenting as distinct immunotypes
linked to clinical features, disease severity, and
temporal changes in response and patho-
genesis. This study provides a compendium
of immune response data and an integrated
framework to connect immune features to
disease. By localizing patients on an immune
topologymap built on this dataset, we can begin
to infer which types of therapeutic interventions
may be most useful in specific patients.

Materials and methods
Patients, participants, and clinical data
collection

Patients admitted to the Hospital of the
University of Pennsylvania with a positive
SARS-CoV-2 PCR test were screened and ap-
proached for informed consent within 3 days
of hospitalization. Healthy donors (HDs) were
adults with no prior diagnosis of or recent
symptoms consistent with COVID-19. Normal
reference ranges for HDs were the University
of Pennsylvania clinical laboratory values
shaded in green in Fig. 1B. Recovered donors
(RDs) were adults with a prior positive COVID-
19 PCR test by self-report who met the defi-
nition of recovery by the Centers for Disease
Control and Prevention. HDs and RDs were
recruited initially by word of mouth and sub-
sequently through a centralized University of
Pennsylvania resource website for COVID-19–
related studies. Peripheral blood was collected
from all participants. For inpatients, clinical
data were abstracted from the electronic med-
ical record into standardized case report
forms. ARDS was categorized in accordance
with the Berlin Definition, reflecting each in-
dividual’s worst oxygenation level and with
physician adjudication of chest radiographs.
APACHE III scoring was based on data col-
lected in the first 24 hours of ICU admission
or the first 24 hours of hospital admission
for participants admitted to general inpatient
units. Clinical laboratory data were abstracted
from the date closest to that of research blood
collection. HDs and RDs completed a survey
about symptoms. After enrollment, the clinical
team determined three patients to be COVID-

negative and/or PCR false-positive. Two of
these patients were classified as immuno-
type 3. In keeping with inclusion criteria,
these individuals were maintained in the
analysis. The statistical significance reported
in Fig. 6K did not change when analysis was
repeated without these three patients. All
participants or their surrogates provided in-
formed consent in accordance with protocols
approved by the regional ethical research
boards and the Declaration of Helsinki.

Sample processing

Peripheral blood was collected into sodium
heparin tubes (BD, catalog no. 367874). Tubes
were spun [15 min, 3000 rpm, room temper-
ature (RT)], and plasma was removed and
banked. Remaining whole blood was diluted
1:1 with 1% RPMI (table S7) and layered into
a SEPMATE tube (STEMCELL Technologies,
catalog no. 85450) preloadedwith lymphoprep
(STEMCELLTechnologies, catalog no. 1114547).
SEPMATE tubeswere spun (10min, 1200×g, RT),
and the PBMC layer was collected, washed with
1% RPMI (10 min, 1600 rpm, RT), and treated
with ACK lysis buffer (5 min, ThermoFisher,
catalog no. A1049201). Samples were filtered
with a 70-mm filter, counted, and aliquoted for
staining.

Antibody panels and staining

Approximately 1 × 106 to 5 × 106 freshly iso-
lated PBMCs were used per patient per stain.
See table S7 for buffer information and table
S8 for antibody panel information. PBMCs
were stainedwith live/deadmix (100 ml, 10min,
RT), washed with fluorescence-activated cell
sorting (FACS) buffer, and spun down (1500 rpm,
5min, RT). PBMCswere incubated with 100 ml
of Fc block (RT, 10 min) before a second wash
(FACS buffer, 1500 rpm, 5 min, RT). Pellet was
resuspended in 25 ml of chemokine receptor
stainingmix and incubated at 37°C for 20min.
After incubation, 25 ml of surface receptor stain-
ing mix was directly added, and the PBMCs
were incubated at RT for a further 45 min.
PBMCs were washed (FACS buffer, 1500 rpm,
5 min, RT) and stained with 50 ml of sec-
ondary antibody mix for 20 min at RT and
then washed again (FACS buffer, 1500 rpm,
5 min, RT). Samples were fixed and permea-
bilized by incubating in 100 ml of Fix/Perm
buffer (RT, 30 min) and washing in Perm
Buffer (1800 rpm, 5 min, RT). PBMCs were
stained with 50 ml of intracellular mix over-
night at 4°C. The following morning, samples
were washed (Perm Buffer, 1800 rpm, 5 min,
RT) and further fixed in 50 ml of 4% para-
formaldehyde (PFA). Before acquisition, sam-
pleswere diluted to 1%PFA, and 10,000 counting
beads were added per sample (BD, catalog
no. 335925). Live/dead mix was prepared in
phosphate-buffered saline (PBS). For the sur-
face receptor and chemokine staining mix,
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antibodies were diluted in FACS buffer with
50%BDBrilliant Buffer (BD, catalog no. 566349).
Intracellular mix was diluted in Perm Buffer.

Flow cytometry

Samples were acquired on a five-laser BD FACS
Symphony A5. Standardized SPHERO rainbow
beads (Spherotech, catalog no. RFP-30-5A) were
used to track and adjust photomultiplier tubes
over time. UltraComp eBeads (ThermoFisher,
catalog no. 01-2222-42) were used for compen-
sation. Up to 2 × 106 live PBMCswere acquired
per sample.

Luminex

PBMCs from patients were thawed and rested
overnight at 37°C in complete RPMI (table S7).
Flat-bottom plates with 96 wells were coated
with 1 mg/ml of anti-CD3 (UCHT1, no. BE0231,
BioXell) in PBS at 4°C overnight. The next day,
cells were collected and plated at 1 × 105 per
well in 100 ml in duplicate. Anti-human CD28/
CD49d (2 mg/ml) was added to the wells con-
taining plate-bound anti-CD3 (Clone L293,
347690, BD). PBMCs were stimulated or left
unstimulated for 16 hours and spun down
(1200 rpm, 10 min), and supernatant (85 ml
per well) was collected. Plasma frommatched
individuals was thawed on ice and spun
(3000 rpm, 1 min) to remove debris, and 85 ml
were collected in duplicate. Luminex assay
was run according to manufacturer’s in-
structions, using a custom human cytokine
31-plex panel (EMD Millipore Corporation,
SPRCUS707). The panel included EGF, FGF-2,
eotaxin, sIL-2Ra, G-CSF, GM-CSF, IFN-
a2, IFN-g, IL-10, IL-12P40, IL-12P70, IL-13, IL-
15, IL-17A, IL-1Ra, HGF, IL-1b, CXCL9/MIG,
IL-2, IL-4, IL-5, IL-6, IL-7, CXCL8/IL-8, CXCL10/
IP-10, CCL2/MCP-1, CCL3/MIP-1a, CCL4/MIP-1b,
RANTES, TNF-a, and VEGF. Assay plates were
measured using a Luminex FlexMAP 3D instru-
ment (ThermoFisher, catalog no. APX1342).
Data acquisition and analysis were performed

using xPONENT software (www.luminexcorp.
com/xponent/). Data quality was examined on
the basis of the following criteria: The standard
curve for each analyte has a five-parameter R2

value > 0.95with orwithoutminor fitting using
xPONENT software. To pass assay technical
quality control, the results for two controls in
the kit needed to be within the 95% confidence
interval provided by the vendor for >25 of the
tested analytes. No further tests were done on
samples with results categorized as out-of-
range low (<OOR). Samples with results that
were out-of-range high (>OOR) or greater than
the standard curve maximum value (SC max)
were not tested at higher dilutions without
further request.

Intracellular stain after CD3/CD28 stimulation

Flat-bottom plates (96 wells) were coated with
1 mg/ml of anti-CD3 (UCHT1, no. BE0231,

BioXell) in PBS at 4°C overnight. The next
day, cells were collected and plated at 1 × 105

per well in 100 ml with 1/1000 of GolgiPlug
(BD, no. 555029). Anti-human CD28/CD49d
(2 mg/ml) was added to the wells containing
plate-bound anti-CD3 (Clone L293, 347690,
BD). GolgiPlug-treated PBMCs were stimu-
lated or left unstimulated for 16 hours, spun
down (1200 rpm, 10 min), and stained for
intracellular IFNg.

Longitudinal analysis D0 to D7 and patient
grouping

To identify participants in which the frequency
of specific immune cell populations increased,
decreased, or stayed stable over time (D0 to
D7), we used a previously published dataset
(where data were available) to establish a
standard range of fold change over time in
a healthy cohort (44). A fold change greater
than the mean fold change ± 2 standard
deviations was considered an increase, less
than this range was considered a decrease,
and within this range was considered stable.
Where these data were not available, a fold
change from D0 to D7 of between 0.5 and 1.5
was considered stable. A fold change <0.5 was
considered a decrease, and >1.5 was considered
an increase. To eliminate redundant tests and
maximize statistical power, the pairwise statis-
tical tests shown in Fig. 5G were performed
using fold change as a continuous metric, ir-
respective of the discrete up, stable, or down
classification described above. Similarly, as shown
in fig. S9G, pairwise association tests between
changes in UMAP component coordinates and
clinical data were performed using each differ-
ence value as a continuous metric, irrespective
of the up, stable, or down classification.

Correlation plots and heatmap visualization

Pairwise correlations between variables were
calculated and visualized as a correlogram
using R function corrplot. Spearman’s rank
correlation coefficient (r) was indicated by
square size and heat scale; significance was
indicated by *P < 0.05, **P < 0.01, and ***P <
0.001; and a black box indicates a false-
discovery rate (FDR) < 0.05. Heatmaps were
created to visualize variable values using R
function pheatmap or complexheatmap.

Statistics

Owing to the heterogeneity of clinical and flow
cytometric data, nonparametric tests of asso-
ciation were preferentially used throughout
this study unless otherwise specified. Correla-
tion coefficients between ordered features
(including discrete ordinal, continuous scale,
or amixture of the two) were quantified by the
Spearman rank correlation coefficient, and sig-
nificance was assessed by the corresponding
nonparametric methods (null hypothesis: r =
0). Tests of association between mixed contin-

uous versus nonordered categorical variables
were performed by unpairedWilcoxon test (for
n = 2 categories) or Kruskal-Wallis test (for n >
2 categories). Association between categorical
variables was assessed by Fisher’s exact test.
For association testing illustrated in heatmaps,
categorical variables with more than two cat-
egories (e.g., ABO blood type) were trans-
formed into binary “dummy” variables for
each category versus the rest. All tests were
performed in a two-sided manner, using a
nominal significance threshold of P < 0.05
unless otherwise specified. When appropri-
ate to adjust for multiple hypothesis testing,
FDR correction was performed using the
Benjamini-Hochberg procedure at the FDR <
0.05 significance threshold. Joint statistical
modeling to adjust for confounding of demo-
graphic factors (age, sex, and race)when testing
for association of UMAP components 1 and 2
with the NIH Ordinal Severity Scale was per-
formed using ordinal logistic regression pro-
vided by the polr function of the R package
MASS. Statistical analysis of flow cytometry data
was performed using the R package rstatix.
Other details, if any, for each experiment are
provided within the relevant figure legends.

High-dimensional data analysis of flow
cytometry data

viSNE and FlowSOManalyseswere performed
on Cytobank (https://cytobank.org). B cells,
non-naïve CD4 T cells, and non-naïve CD8
T cells were analyzed separately. viSNE analy-
sis was performed using equal sampling of
1000 cells from each FCS file, with 5000 itera-
tions, a perplexity of 30, and a theta of 0.5.
For B cells, the following markers were used
to generate the viSNE maps: CD45RA, IgD,
CXCR5,CD138,Eomes,TCF-1,CD38,CD95,CCR7,
CD21, KI67, CD27, CX3CR1, CD39, T-bet, HLA-
DR, CD16, CD19 and CD20. For non-naïve
CD4 and CD8 T cells, the following markers
were used: CD45RA, PD-1, CXCR5, TCF-1, CD38,
CD95, Eomes, CCR7, KI67, CD16, CD27, CX3CR1,
CD39, CD20, T-bet, and HLA-DR. Resulting
viSNE maps were fed into the FlowSOM
clustering algorithm (59). For each cell subset,
a new self-organizing map (SOM) was gen-
erated using hierarchical consensus clustering
on the tSNE axes. For each SOM, 225 clusters
and 10 or 15 metaclusters were identified for
B cells and T cells, respectively.
To group individuals on the basis of B cell

landscape, pairwise EMD values were calcu-
lated on the B cell tSNE axes for all COVID-19
D0 patients, HDs, and RDs using the emdist
package in R, as previously described (60).
Resulting scores were hierarchically clustered
using the hclust package in R.

Batch correction

During the sample-acquisition period, the flow
panel was changed to remove one antibody.
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Batch correction was performed for samples
acquired before and after this change to
remove potential bias from downstream anal-
ysis. Because the primary flow features were
expressed as a fraction of the parent popula-
tion (falling in the 0-to-1 interval), a variance
stabilizing transform (logit) was first applied
to each data value prior to recentering the
second panel to have the same mean as the
first. After mean-centering, data were trans-
formed back to the original fraction of parent
scale by inverse transform. This procedure
was applied separately to all 553 flow features
annotated in the main text and supplemental
data. Notably, this procedure avoids any batch-
corrected feature values artificially falling out-
side of the original 0-to-1 range. After batch
correction, neither UMAP component 1 nor
component 2 had a statistically significant
difference between panels by unpaired Wil-
coxon test.

Visualizing variation of flow cytometric features
across the UMAP embedding space

A feature-weighted kernel density was com-
puted across all COVID-19 patients and was
displayed as a contour plot (Fig. 6G and fig. S8,
A to D). Whereas traditional kernel density
methods apply the same base kernel function
to every point to visualize point density, in this
case the base kernel function centered at each
individual COVID-19 patient sample was in-
stead weighted (multiplied) by the Z-transform
(mean-centered and standard deviation–
scaled) of the log-transformed input feature
prior to computing the overall kernel density.
This weighting procedure facilitated visual-
ization of the overall feature gradients (from
relatively low to high expression) across UMAP
coordinates. independent of the different range
of each input feature. A radially symmetric two-
dimensional Gaussian was used as the base
kernel function with a variance parameter of
one-half, which was tuned to be sufficiently
broad in order to smooth out local disconti-
nuities and best visualize feature gradients.

Definition of immunotype 3

To define COVID-19 patients with low or ab-
sent immune responses, classified as immuno-
type 3, the intersection of the bottom 50%
of five different flow parameters was used: PB
as percentage of B cells, KI67+ as percentage
of non-naïve CD4 T cells, KI67+ as percentage
of non-naïve CD8 T cells, HLA-DR+CD38+

as percentage of non-naïve CD4 T cells, and
HLA-DR+CD38+ as percentage of non-naïve
CD8 T cells. See fig. S10.
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