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Abstract

Corn, soybean, spinach leaf, and tomato aquaporins have been shown to share homology with human aquaporin-4, which
is abundantly expressed by brain astrocytic endfeet. Thus, antibodies formed against the dietary aquaporins may poten-
tially cross-react with brain aquaporin, leading to blood-brain barrier permeability and setting the stage for
neuroautoimmunity and neurodegeneration. Here, we review the role of aquaporins in plants and humans in maintaining
a healthy organism and mechanisms by which dietary aquaporins may contribute to neurological disorders. We include
clinical data on the correlation between four real-world, dietary aquaporin and five neurological tissue antibodies. Our
findings showed the percent of neurological tissue antibody production increased with the number of positive food
aquaporins. Of the four food aquaporins, spinach was the most common reactive. Of the neurological tissues assessed,
tubulin was the most common positive. Patients with antibody reactivity to dietary aquaporins may consider abstaining
from the aquaporin-containing food in order to prevent neurological tissue damage.
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Introduction Specific foods have been shown to play a role in certain

neurological disorders. Indeed, nutrition and dietary strategies

Neurological disorders including Alzheimer’s disease, multi-
ple sclerosis, and autism spectrum disorders are devastating,
not only to the patient but also to the family and loved ones of
the afflicted. Any simple lifestyle choices that could prevent
the onset of neuroautoimmunity should be investigated. Diet
is a controllable lifestyle choice. The identification of
offending foods can play a role in the prevention or arrest of
neuroautoimmune reactivity.
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are being investigated or recommended for Alzheimer’s dis-
ease [1-3], multiple sclerosis [4—6], and autism spectrum dis-
orders [7-9]. In a previous study [10], we demonstrated the
correlation between the production of gluten-family protein,
dairy-family protein, and lectin/agglutinin antibodies and the
reactivity to self-tissues. The number one targeted tissue for
each food group antibodies was neurological.

One of the major components protecting the nervous
system is the astrocytes. Using its endfeet, which express
an aquaporin (AQP), one of the astrocyte’s roles is the
support of the blood-brain barrier (BBB). Due to the anti-
genic similarity between plant and human AQPs, antibody
immune reaction against food-based AQP can result in
neuroautoimmunity. Circulation of these food AQP anti-
bodies alone may not result in autoimmune disease, but a
breach of the BBB allows for these, and other circulating
pathogenic antibodies, to enter the nervous system and
induce neuroautoimmuity. AQPs have been studied exten-
sively in neuromyelitis optica [11-15]. Here, we review the
functions and similarities of food and human aquaporins,
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the role of human aquaporin in the protection of the brain
and nervous system, and the neuroautoimmunity that can
occur when the blood-brain barrier has been breached.

Aquaporin functions

Moving water is the fundamental life-giving force on Earth.
Without it, every living thing would perish. While life-giving,
too much water can bring death. Most living terrestrial beings
have aquaporin within them. AQP regulates the flow of water
into, or out of, the organism, in order to optimize the well-
being of the life form.

Aquaporins (AQPs) are membrane channel proteins [16, 17].
They were first identified in soybean [18] as transporters of
water, thus the name; however, later research found that these
channel proteins facilitate the transport of boron, silicon, or car-
bon dioxide [16, 17]. Thus, in plant research, the term aquaporin
has been replaced with major intrinsic proteins (MIPs) to em-
brace the array of transported substrate necessities [16]. AQP is
expressed in roots and leaves of many plants in order to take in
water when needed. In times of drought, the aquaporin channels
in the leaves are closed to transpiration, in order to conserve
water [17]. Conversely, when too much water is in the soil, the
root-based AQP channels are closed to the intake of water.

Like plants, humans have AQP water channel proteins. The
first, aquaporin 1 (AQP1), was discovered in 1992 [19]. The
human aquaporin often researched in neurological disorders is
aquaporin 4 (AQP4). It is the most abundant water channel
protein in the nervous system and plays an important role in
BBB defense. Although AQP4 is concentrated in the astrocyt-
ic foot process, it is also expressed, at lower concentrations, in
other organs including the lung, thyroid, and stomach
[20-22]. In the brain, AQP4 plays a role in neuroplasticity
[23], the removal of waste from the brain [24], and the control
of water into and out of the brain [25]. Indeed, the expression
of AQP4 is greatly increased during cognitive stimulation,
showing that it plays a positive role in neuroplasticity [23].
AQP4 serves as a trash chute for the removal of waste out of
the brain and into circulation, where it can be processed and
eliminated from the body [23]. And, as the name implies,
AQP4 transports water into the brain but also moves water
out of the brain in times of edema [25].

Bestowed with a variety of protective properties, AQPs are
vital to maintaining the health of the living being.

Plant and human aquaporin homology

Vaishnav and colleagues [26] did an elegant job of identifying
the shared amino acid sequences of human and plant AQPs.
Corn (maize), soybean, spinach leaf, and tomato AQPs have
homology to AQP4 (Fig. 1). Shared structural homology

between dietary proteins and human tissues can result in au-
toimmune reactivity in genetically susceptible individuals.
Due to a similarity in structure, if antibodies are produced
against a dietary protein, such as spinach leaf AQP, those
spinach leaf AQP antibodies could potentially mistake
AQP4 in the astrocytes for spinach leaf AQP. This mechanism
of cross-reactivity, instigated by a dietary protein, and igniting
an attack on self-tissue, as if it were foreign material, is illus-
trated in Fig. 2.

Cross-reactivity between dietary AQPs and AQP4 is
concerning. Antibodies made against food AQPs were shown
to react to AQP4 in patients with neuromyelitis optica (NMO)
a subtype of multiple sclerosis (MS) [26]. Dietary AQPs are
resilient. They can withstand dramatic temperature changes
involved in food preparation, surviving the cooking process
[27]. Therefore, food AQPs reach the gastrointestinal (GI)
system as whole proteins. If they are antigenic to the consum-
er, antibodies will be formed. As discussed, these antibodies
may attack self-tissue. Being that AQP4 is also expressed in
the stomach [27], the ingestion of corn, soy, spinach, and
tomato may even contribute to GI barrier breakdown.

A breakdown of the GI barrier allows for the rapid transport
of large, antigenic material from foods, bacteria, and other gut-
related proteins, into circulation. Antibody formation follows.
Excessive antibody production may lead to systemic inflamma-
tion, followed by autoimmunity as circulating antibodies may
cross-react with self-tissues. A broken GI barrier has been
shown to put the body at risk for autoimmunity [28-30].
Systemic inflammation and autoimmune reactivity may target
the BBB, putting the brain and nervous system at risk for
neuroautoimmune reactivity. The connection between the break-
down of the gut barrier leading to the breakdown of the BBB has
been established [31-35].

Human aquaporin and the blood-brain
barrier

Our focus on AQP4 centers on its vital support of the BBB.
The BBB serves as a physical barrier between the brain and
the circulating blood. Its structure is formed by the arrange-
ment of endothelial cells and tight junctions that line the cap-
illaries, which supply blood to the brain. It is a highly selective
barrier that restricts the movement of all soluble proteins
greater than 400 Da from the blood across to the brain.
Acting like a sieve, the BBB protects the brain from dietary
antibodies, the products of enteric organisms such as lipopoly-
saccharides (LPSs), and toxic chemicals, etc., that circulate in
the blood. The BBB naturally permits the passage of essential
metabolites, small hydrophobic molecules like oxygen, car-
bon dioxide, hormones, etc.

On the brain side of the BBB, the barrier is enwrapped by
the endfeet of astrocytes. By connecting their endfeet to the
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Fig. 1 Homology of human, corn, soybean, spinach and tomato aquaporins. Valshnav and colleagues found incredible shared homology between

sequences of human aquaporin and four specific food aquaporins

BBB endothelial cells and pericytes, astrocytes form a second-
ary layer of protection [36, 37]. A breach of the BBB can occur

Autoimmune

due to a variety of environmental insults including emotional
stress [38], systemic LPS [39, 40], repetitive head jarring as
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Fig. 2 Mechanism of food protein antibody cross-reactivity leading to
neuroautoimmunity. The induction of environmentally-induced
neuroautoimmunity by cross-reactivity or molecular mimicry starts with
a genetic susceptibility for neurological disease. The person consumes
spinach. The person loses immune tolerance to spinach aquaporin and
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makes a myriad of antibodies to aquaporin proteins. Some of those spin-
ach aquaporin-specific antibodies mistake human aquaporin (AQP4) tis-
sue for spinach aquaporin, attack it, which breaks down the blood-brain
barrier and eventually neuroautoimmunity ensues
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seen in some sports [41], traumatic brain injury [42] as seen in
motor vehicle accidents, concussions, and other physical im-
pacts. The astrocyte structure must be secure in the event of a
break in the BBB, to provide a secondary barrier. However, this
leaves no protection for the astrocytic endfeet. Due to the con-
centrated expression of AQP4 in the endfeet of astrocytes, they
are vulnerable to circulating food AQP antibodies.

If antibodies against corn, soy, spinach, or tomato AQPs
are circulating in the bloodstream during a breach of the
BBB, those antibodies may attack AQP4 and thereby de-
stroy the secondary layer of protection for the brain. AQP
immunoglobulin (Ig) G was shown to compromise astro-
cytic endfoot integrity [43, 44]. The result was a broken
BBB, dysfunction of synaptic microenvironments, and au-
toimmune astrocytopathies. See Fig. 3.

In pathogenesis, AQP4 plays a role in astrogliosis and the
secretion of proinflammatory cytokines [40]. AQP4 has the
distinction of being a target of autoimmunity in the pathogen-
esis of astrogliosis or NMO spectrum disorders [26, 45, 46].
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Fig. 3 Circulating autoreactive antibodies and break down of BBB. As
long as the BBB is intact, the brain and nervous system are protected,
even if there are multiple antibodies in the blood stream. A breach of the
BBB via physical or emotional stressors allows dietary AQP antibodies
(large antibodies) access to the astrocytic foot process. Once the foot
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Here, AQP4 antibodies bind to astrocytes contributing to the
pathogenesis of NMO and related disorders [47]. Furthermore,
AQP4 antibody levels were shown to increase previous to dis-
ease relapse [48], which supports the role of AQP4 antibodies
as a mechanism of pathogenesis. NMO is more commonly
found in Asian countries. It is speculated that this phenomenon
occurs due to the increased consumption of soybean and spin-
ach by these populations [26]. Neuropsychiatric disorders re-
lated to AQP4, as accumulated in an excellent review by Xiao
and Hu [49], include Alzheimer’s disease [50], depression [51],
drug addiction [52], and Parkinson’s disease [53].

Consequence of BBB breakdown and entry
of dietary protein antibodies into the nervous
system

When the BBB is damaged, it provides an unguarded entry-
way for environmental triggers to infiltrate the brain and
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process is destroyed, the breakdown of the BBB is complete. Any
circulating antibodies (small antibodies) can now infiltrate the brain and
target neurological tissues that are similar to the antibody’s specific target
antigen
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nervous system. As illustrated in Fig. 2, due to the similarity
between some of these triggers and neurological tissues,
neuro-reactive antibodies can be formed. The greater the num-
ber of circulating autoreactive antibodies during a breach of
the BBB, the greater the potential damage to the nervous sys-
tem. As neuronal tissues become damaged, their entry into
circulation ignites antibody production against self-tissue.
Neuronal autoantibodies contribute to the onset of neurologi-
cal diseases.

Known cross-reactions between neurological tissues and
environmental triggers include a variety of food proteins and
pathogens. The glycosphingolipid, asialoganglioside, has
been shown to have cross-reactivity with gliadin [54],
Campylobactor jejuni lipopolysaccharides [55], and strepto-
coccal proteins [56]. Cerebellar neurons, called Purkinje cells,
have been shown to have cross-reactivity with gliadin [54, 57]
and milk butyrophilin [57]. Nerve sheath tissue, myelin ba-
sic protein, has been shown to be cross-reactive with glia-
din [54], Chlamydia pneumoniae [58], herpes-6 [58], and
streptococcal protein [58, 59]. Myelin sheath adhesion
molecule, myelin oligodendrocyte glycoprotein, has been
shown to cross-react with milk butyrophilin [57].
Synapsin, a regulator of neurotransmitter release, has been
shown to have cross-reactivity with gliadin [54]. And fi-
nally, the building block protein, tubulin, has been shown
to cross-react with streptococcal protein [59].

Neurological disorders associated with antibodies
against the above-cited self-tissues include autism [60,
61], chronic inflammatory demyelinating polyneuropathy
[62], demyelinating diseases [63, 64], gluten ataxia [57,
61], Guillain Barré syndrome [55], inhibited neurotrans-
mitter release [65], Miller Fisher syndrome [55], motor
neuron disease [62, 66], multifocal motor neuropathy
[43], multiple sclerosis [58, 64, 66, 67], myasthenia gravis
[66], pediatric autoimmune neuropsychiatric disorders as-
sociated with streptococcal infections (PANDAS) [59],

paraneoplastic cerebellar degeneration syndrome [57, 68,
69], and sensorimotor neuropathy [62]. A host of neuro-
logical disorders is possible if the BBB is broken.

The question of the chicken or the egg was posed by
Vojdani et al., in a study of specific antibody production in
patients with multiple sclerosis [70]. They found elevated se-
rum antibodies to both human and plant AQPs. The authors
speculate on the known cross-reactivity between human
AQP4 and AQP from corn, soybean, spinach, and tomato,
asking are the plant aquaporin antibodies elevated because
the BBB has been breached and human aquaporin antibodies
are cross-reacting with the food AQPs, or were circulating
plant AQPs attacking human aquaporin once the BBB was
broken and astrocyte endfeet were exposed? Either scenario is
possible.

In the first scenario, astrocytic endfeet are damaged, releas-
ing AQP4 into the blood stream. Antibodies against AQP4 are
formed. The innocuous plant AQPs consumed may be
targeted by the AQP4 antibodies. This is a display of human
AQP4 mistaking, or cross-reacting with, plant AQPs. The
second scenario occurs when the initial antibody immune re-
action was against ingested food AQPs. AQP antibodies cir-
culate in the bloodstream. Once a breach of the BBB occurs,
these circulating AQP antibodies mistake human AQP4 for
food AQP and attack the self-tissue. This is food protein anti-
body cross-reactivity with human tissue protein.

Correlation of dietary aquaporin and nervous
system tissue antibodies

If food AQP antibodies contribute to the breakdown of the
BBB, the presence of these antibodies should precede the
onset of neuroautoimmune reactivity (Fig. 4). To better under-
stand the risk of neuroautoimmunity in the presence of circu-
lating antibodies against food aquaporins, we assessed IgG +
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Fig. 5 Neurological tissue 30 1
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IgA immune reactivity against real-world dietary exposures of
cooked corn + corn aquaporin, soybean oleosin + soy aqua-
porin, raw spinach + spinach aquaporin, and raw tomato +
tomato aquaporin, simultaneously with IgG + IgA immune
reactivity against asialoganglioside, cerebellar, myelin basic
protein, alpha + beta tubulin, and synapsin.

Testing was performed by Cyrex Laboratories, LLC,
Phoenix, Arizona USA. Enzyme-linked immunosorbent assay
technology, as previously described [52], was used for all
assessments. Specimens were run in duplicate to ensure repro-
ducibility of the results. Variations in optical density (OD)
between duplicate wells were less than 20%.

When 577 patients were assessed simultaneously for food
and neuronal tissue reactivity, a total of 136 adult (19 years or
older) subjects tested positive for at least one food + aquaporin
(Fig. 5). We randomly selected 86 (43 male and 43 female) for
gender comparison. We then compared the food testing results
of these 86 individuals with their tissue antibody results.

The most reactive food containing aquaporin reactivity was
spinach (79%), followed by corn (64%), tomato (37%), and
soybean (26%). Variations were seen in results between adult
males (ages 19-77) and females (ages 19—74). In males
reacting to 1, 2, 3, or 4 food aquaporins, 34%, 33%, 67%,
and 100% respectively reacted to one or more neurological
tissues. While in females reacting to 1, 2, 3, or 4 food aqua-
porins, 53%, 67%, 50%, and 100% respectively reacted to one
or more neurological tissues. However, the combined adult
results revealed an increase in neurological autoimmune reac-
tivity with an increase in the number of positive reactions to
food aquaporin antigens. In adults reacting to 1, 2, 3, or 4 food
aquaporins, 41%, 54%, 60%, and 100% respectively reacted
to one or more neurological tissues.

Females had more reactivity to neurological tissues than
males. Results showed MBP (14% males, 21% females),
asialoganglioside (19% males, 21% females), alpha + beta
tubulin (16% males, 26% females), cerebellar (9% males,

Males

Adults Combined

Females

16% females), and synapsin (7% males, 12% females).
Combined results revealed the most to the least common neu-
ronal tissue reactivity as alpha + beta tubulin (21%),
asialoganglioside (20%), myelin basic protein (17%), cerebel-
lar (13%), and synapsin (9%).

Clearly, the more reactivity to multiple food AQPs, the
greater the possibility for neuroautoimmune reactivity.
However, even a 41% chance for immune reactivity to self-
tissue, as seen in the adult reactivity to one food AQP, is
significant, especially in patients with a family history of neu-
rological disorders.

Conclusion

The known cross-reactivity between human AQP4 and corn,
soybean, spinach leaf, and tomato AQPs, coupled with the
knowledge that a broken BBB is the invitation for
neuroautoimmunity, leads to two conclusions. First, if a
healthcare practitioner is working with a patient who ex-
hibits neurological symptoms, testing for food AQPs is
warranted. A positive result, followed by the removal of
the offending foods, may improve the patient’s clinical
condition. Second, if a patient shows reactivity to food
AQPs, specifically corn, soybean, spinach, and/or tomato,
follow up antibody testing of BBB integrity and neuronal
tissues should be considered. If BBB dysfunction and/or
neuroautoimmune reactivity is detected, a lifestyle dietary
change that includes the avoidance of the specific AQP
foods may prevent, slow down, or arrest the pathogenesis
of neurodegeneration. A small number of patients were
included in this study. Larger studies on food AQP and
other food proteins that mimic neuronal tissues need to
be performed to better understand the role of food in the
pathogenesis of neurological disorders.
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