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The blood-brain barrier (BBB) is a highly specialized brain endothelial structure of the fully differentiated
neurovascular system. In concert with pericytes, astrocytes, and microglia, the BBB separates components
of the circulating blood from neurons. Moreover, the BBB maintains the chemical composition of the neuronal
‘‘milieu,’’ which is required for proper functioning of neuronal circuits, synaptic transmission, synaptic
remodeling, angiogenesis, and neurogenesis in the adult brain. BBB breakdown, due to disruption of the tight
junctions, altered transport of molecules between blood and brain and brain and blood, aberrant angiogen-
esis, vessel regression, brain hypoperfusion, and inflammatory responses, may initiate and/or contribute to
a ‘‘vicious circle’’ of the disease process, resulting in progressive synaptic and neuronal dysfunction and loss
in disorders such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, multiple scle-
rosis, and others. These findings support developments of new therapeutic approaches for chronic neurode-
generative disorders directed at the BBB and other nonneuronal cells of the neurovascular unit.
The great British physiologist Hugh Davson, one of the founders

of the modern concept of the blood-brain barrier (BBB), dis-

cussed in his state-of-the art review some 30 years ago the model

and functions of the BBB (Davson, 1976). In Davson’s era, and

later in the eighties and early nineties, very little, if anything,

was known about the role of the BBB in the pathogenesis of brain

disorders, a field that has exploded over the past decade, and is

the subject of the present review.

Introduction
At the beginning of the last century, Lewandowsky (1900) sug-

gested that the absence of central nervous system (CNS) phar-

macological actions of intravenously administered bile acids or

ferrocyanide was due to the BBB, a mechanical membrane

which separated blood from brain. The failure of the intrave-

nously administered dye, trypan blue, to stain the brain and spi-

nal cord tissue confirmed this view (Goldmann, 1909) (Figure 1A).

It was suggested that such a barrier did not exist between the

cerebrospinal fluid (CSF) and brain (Goldmann, 1913) (Figures

1B and 1C).

Electron microscopy (EM) studies with ferritin and horseradish

peroxidase have since shown that the BBB is localized at the

level of tight junctions (TJ) between adjacent brain endothelial

cells (BEC) (Reese and Karnovsky, 1967; Brightman and Reese,

1969). The molecular nature of different interendothelial junction

proteins, and their roles in mediating the BBB breakdown in

various CNS diseases, are discussed below.

Physiological studies in the fifties, sixties, and seventies began

to change the concept of the BBB as an impermeable barrier.

Owing to the presence of highly specialized and diverse trans-

port systems for chemically well-defined substrates (Ohtsuki

and Terasaki, 2007), early transport studies demonstrated that

the brain endothelium, a site of the BBB in vivo, regulated active

transport of ions (Davson, 1976) and carrier-mediated transport
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of glucose (Yudilevich and De Rose, 1971) and amino acids (AA)

(Oldendorf, 1973; Davson, 1976). The role of different BBB trans-

porters in the normal brain as potential therapeutic targets or ef-

fectors in the development of brain pathology is discussed later.

Today, we accept the view that the BBB limits the entry of

plasma components, red blood cells, and leukocytes into the

brain. If they cross the BBB due to an ischemic injury, intracere-

bral hemorrhage, trauma, neurodegenerative process, inflam-

mation, or vascular disorder, this typically generates neurotoxic

products that can compromise synaptic and neuronal functions

(Zlokovic, 2005; Hawkins and Davis, 2005; Abbott et al., 2006).

An intact BBB is also a major obstacle for the development of

drugs for CNS disorders. Approximately 98% of small molecule

drugs and all large molecule neurotherapeutics, e.g., recombi-

nant peptides, proteins, anti-sense-agents and genetic vectors,

are normally excluded from the brain (Pardridge, 2007). When

confronted with the BBB, they behave essentially like trypan

blue (Figure 1).

Neurovascular System
In humans, the brain receives up to 20% of cardiac output. If

cerebral blood flow (CBF) stops, brain functions stop in seconds

and damage to neurons may occur in minutes (Girouard and

Iadecola, 2006).

The normal neuronal-vascular relationship is critical for normal

brain functioning. It has been estimated that nearly every neuron

in human brain has its own capillary (Zlokovic, 2005). The total

length of capillaries in human brain is about 400 miles, and the

capillary surface area available for molecular transport is about

20 m2 (Begley and Brightman, 2003). The thickness of the cere-

bral endothelial membrane is 0.2 to 0.3 mm. The length of brain

capillaries is reduced in neurodegenerative disorders, as for

example in Alzheimer’s disease (AD) (Bailey et al., 2004; Wu

et al., 2005). These vascular reductions can diminish transport
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of energy substrates and nutrients across the BBB, and reduce

the clearance of potential neurotoxins from the brain, as dis-

cussed below.

Figure 2A illustrates a vascular cast of the mouse brain dem-

onstrating the rich network of blood vessels that continues at

the level of brain capillaries (Figure 2B). In vivo multiphoton imag-

ing of cortical blood flow in mice expressing green fluorescent

protein (GFP) in the brain endothelium shows that virtually all

brain microvessels are constantly perfused at any time (Fig-

ure 2C). The former ‘‘capillary recruitment’’ hypothesis, propos-

ing opening of new capillaries from an increase in the CBF and

closing of brain capillaries from a decrease in the CBF (Weiss,

1988), has thus been modified to a ‘‘functional recruitment’’ hy-

pothesis: brain capillaries are perfused all the time, but they tran-

sition from low to high blood flow with an increase in the CBF, or

from high to low blood flow with a decrease in the CBF (Kuschin-

sky and Paulson, 1992). As shown in rodent models of brain hyp-

oxemia, the major mechanisms raising the CBF are increased

velocity of microvessel perfusion (Bereczki et al., 1993) and

recruitment of red blood cells to the capillary networks (Krolo

and Hudetz, 2000).

The morphometric analysis of the mouse cortical vasculature

in vivo based on two-photon imaging indicates that perfused

capillaries (�4–8 mm in diameter) and small arterioles and venules

(10–60 mm in diameter) occupy between 3%–4% and 4%–6% of

the brain volume, respectively. This correlates well with some in

vivo measurements of the blood volume in the gray matter in

human brain determined by magnetic resonance imaging (MRI)

(Rengachary, 2005).

BBB Cellular Junctions
The BBB is composed of a tightly sealed monolayer of BEC, which

normally precludes free exchanges of solutes between blood and

brain and brain and blood (Ohtsuki and Terasaki, 2007). An excep-

tion to this rule are small lipid-soluble molecules <400 Da with

fewer than nine hydrogen bonds, which can cross the BBB unas-

sisted, via lipid-mediated diffusion (Pardridge, 2007). All drugs

presently in clinical use for CNS therapy are small molecules

that have these characteristics. Lipid mediation of small mole-

cules through biological membranes requires molecular move-

ment through channels of a finite size within the lipid bilayer.

BEC are normally connected at a junctional complex by the TJ

and adherens junctions (AJ) (Hawkins and Davis, 2005). Gap

Figure 1. The Blood-Brain Barrier, or BBB, to Trypan Blue and Its
Diffusion from the Cerebrospinal Fluid, or CSF, into the Brain
(A) Goldmann’s first experiment. Trypan blue (dye) was injected into the blood.
Brain and CSF were analyzed.
(B) Goldmann’s second experiment. Dye was injected into the CSF. Brain and
blood were analyzed.
(C) Conclusions from the two experiments.
junctions have also been identified at the BBB (Nagasawa

et al., 2006), but their role in the barrier function is not clear. The

TJ primarily confer the low paracellular permeability and high

electrical resistance of the BBB (Bazzoni and Dejana, 2004). Pos-

sible roles of different TJ proteins in the pathogenesis of various

brain disorders are discussed below.

Tight Junctions

The molecular biology of the TJ is quite complex (Wolburg,

2006). The TJ proteins and their adaptor molecules, which link

the TJ to the cytoskeleton, are often affected during acute and

chronic diseases of the brain. Figure 3A shows the molecular or-

ganization of the BBB TJ, which form a continuous cellular mem-

brane that restricts transport of molecules between blood and

the brain interstitial fluid (ISF), and vice versa.

Occludin. Occludin was the first integral membrane protein

discovered within the TJ of endothelial cells, including the

BBB. A deletion construct lacking the N terminus and extracellu-

lar domains of occludin exerted a dramatic effect on the TJ integ-

rity (Bamforth et al., 1999). Cell monolayers failed to develop an

efficient permeability barrier, as demonstrated by low transcellu-

lar electrical resistance, an increased paracellular flux to small

molecular mass tracers, and the presence of gaps in the P-

face associated TJ strands on the freeze-fracture EM analysis.

These findings demonstrated that the N-terminal half of occludin

had an important role in maintaining a TJ assembly and the

barrier function.

Deletion of occludin in mice results in a complex phenotype

and postnatal growth retardation (Saitou et al., 2000). Surpris-

ingly, the TJ themselves are not affected by the lack of occludin,

as demonstrated by well-developed networks of TJ strands

and normal transepithelial electrical resistance. Likely, normal

Figure 2. A Cast of the Microvascular Network and Two-Photon
In Vivo Imaging of the Mouse Brain Microcirculation
(A) Vascular cast of a mouse cortex. Mouse was infused via carotid artery with
methyl metacrylate. To obtain a corrosive cast, brain tissue was dissolved with
potassium hydroxide.
(B) Scanning electron micrograph of microvessels from the cast in (A).
(C) Cortical microcirculation in Tie-2-GFP-expressing mice studied in vivo by
two-photon in vivo imaging. (Left) GFP (green) is localized exclusively to the
brain endothelium. (Middle) Intravenously injected intravascular marker
tetra-meta rhodamine (TMR, mw = 70 kDa, red) remains restricted within brain
microvessels by the BBB. (Right) Merged left and middle panels indicate that
all cortical microvessels were perfused with TMR. A two-photon image of the
parietal cortex was taken through the thinned skull at a depth of 50 mm.
(A) and (B), courtesy of Dr. Yaoming Wang, and (C), courtesy of Rachal Love
from B.V. Zlokovic laboratory.
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expression and localization of other junctional proteins such as

claudin-3, zonula occludens-1 (ZO-1), ZO-2, vascular endothe-

lial cadherin (VE-cadherin), and a-catenin may compensate

well for occludin loss (Saitou et al., 2000). However, hyperplasia

of the gastric epithelium, calcifications in the brain, and testicular

atrophy found in occluding-deficient mice (Saitou et al., 2000)

raise a possibility that occludin has some other important phys-

iological roles beyond its function as a TJ protein. Indeed, recent

studies have demonstrated that occludin regulates epithelial cell

differentiation (Schulzke et al., 2005). In addition, it controls clau-

din-2-dependent TJ function, as well as cell apoptosis through

inhibition of mitogen-activated protein kinases (MAPK) and Akt

signaling pathways (Murata et al., 2005). Whether occludin has
180 Neuron 57, January 24, 2008 ª2008 Elsevier Inc.
a role in the BBB differentiation during normal development,

brain vascular repair, or both remains to be explored.

Recent studies of mice with experimental autoimmune en-

cephalomyelitis (EAE), a model of multiple sclerosis (MS), have

shown that occludin dephosphorylation precedes visible signs

of disease and happens just prior to apparent changes in the

BBB permeability (Morgan et al., 2007). These findings suggest

that occludin could be a target for signaling processes in EAE

and that it may regulate the response of the BBB to the inflam-

matory environment, as seen in MS.

Treatment of mice with Tat protein results in decreased expres-

sionof occludinand ZO-1 (Pu et al., 2007). Tat is normally released

from human immunodeficiency virus type 1 (HIV-1)-infected
Figure 3. A Simplified Molecular Atlas of the BBB
(A) Tight junctions. Claudins (claudin-3, -5, and -12) and occludin have four transmembrane domains with two extracellular loops. The junctional adhesion mol-
ecule A (JAM-A) and the endothelial cell-selective adhesion molecule (ESMA) are members of the Ig superfamily. Zonula occludens proteins (ZO-1, ZO-2, and ZO-3)
and the calcium-dependent serine protein kinase (CASK) are first-order cytoplasmic adaptor proteins that contain PDZ binding domains for the C terminus of the
intramembrane proteins. Cingulin, multi-PDZ protein 1 (MUPP1), and the membrane-associated guanylate kinase with an inverted orientation of protein-protein
interaction domain (MAGI) are examples of second-order adaptor molecules. The first- and second-order adaptor molecules together with signaling molecules
control the interaction between the intramembrane proteins and actin/vinculin-based cytoskeleton. Adherens junctions. The vascular endothelial cadherin
(VE-cadherin) is the key molecule. Platelet endothelial cell adhesion molecule 1 (PECAM-1) mediates homophilic adhesion. Catenins (a, b, c) link adhesion junc-
tions to actin/vinculin-based cytoskeleton.
(B) Carrier-mediated transporters. GLUT1, glucose transporter, and monocarboxylate transporter 1 (MCT1) for lactate exist at both the luminal and the abluminal
membranes. All essential amino acids (AA) are transported by the L1 and y+ systems on each membrane. Five Na+-dependent transport systems mediate elim-
ination of nonessential AA (ASC, A), essential AA (LNAA), the excitatory acidic AA (EAAT) (e.g., glutamate and aspartate), and nitrogen-rich AA (N) (e.g., glutamine)
from the brain. Facilitative transporters xG

� and n on the luminal membrane mediate glutamate, aspartate, and glutamine efflux to blood. Ion transporters. The
sodium pump (Na+, K+-ATPase) on the abluminal membrane controls Na+ influx and K+ efflux. Sodium-hydrogen exchanger on the luminal membrane is a key
regulator of intracellular pH. Na+-K+-2Cl– cotransporter is on the luminal membrane. The chloride-bicarbonate exchanger exists on each membrane.
(C) Active efflux transporters. Multidrug efflux transporters at the luminal membrane limit drug uptake into the brain. Transporters at the abluminal membrane
could act in concert with luminal transporters to eliminate drugs from brain ISF. P-gp is expressed on each membrane. Breast cancer resistance protein
(BCRP) is on the luminal membrane. Multidrug resistance-associated proteins (MRPs) are expressed mainly on the luminal membrane. Organic anion transport-
ing polypeptide (OATP) 2 and 3 exist on the luminal and abluminal membranes, respectively. Organic anion transporter 3 (OAT3) is on the abluminal membrane.
Peptide transporters and caveolae. Peptide transport system 1 (PTS-1) on the abluminal membrane mediates efflux of opioid peptides (e.g., enkephalins) from
brain. PTS-2 mediates efflux of arginine-vasopressin (AVP). PTS-4 on the luminal membrane requires the vasopressinergic receptor 1 (V1) to transport AVP into
the brain. Receptors for insulin (IR) and transferrin (TFR) are found in the caveolar membranes. Caveolin-1 (Cav-1) could be associated with receptors (e.g., TFR),
tight junctions (TJ), or growth factor receptors, such as vascular endothelial growth factor receptor (Flk-1).
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blood-borne leukocytes. It contributes to the BBB breakdown by

providing potential entry for HIV-1 into the brain. Tat-induced loss

of occludin and ZO-1, and the resulting loss of the TJ integrity, can

be implicated in the pathogenesis of HIV-1-related brain

diseases.

Occludin is also vulnerable to attack by matrix metalloprotei-

nases (MMPs) (Rosenberg and Yang, 2007). Reperfusion injury

in rodent models of stroke leads to a biphasic opening of the

BBB, with the early opening occurring several hours after the on-

set of reperfusion due to activation of the constitutive enzyme

gelatinase A (MMP-2). This initial opening is transient and fol-

lowed 24 to 48 hr later by more intense damage to the blood ves-

sel, which is associated with the expression and activation of ge-

latinase B (MMP-9) and stromelysin-1 (MMP-3). MMPs can also

degrade basal lamina proteins such as fibronectin, laminin, and

heparan sulfate after an ischemic insult, which contributes to the

BBB breakdown (Cheng et al., 2006; Zlokovic, 2006).

Accumulation of occludin in neurons, astrocytes, and micro-

glia in AD, frontotemporal dementia, and vascular dementia

has also been reported (Romanitan et al., 2007), suggesting pos-

sible new functions of occludin and the TJ proteins in the patho-

genesis of these dementias. Their exact role in dementia-related

pathologies, however, remains to be elucidated, as discussed

below.

Claudins. The claudins are a multigene family of more than

20 members that form TJ strands through homophilic claudin-

claudin interactions mediated by the extracellular loop 2 of clau-

dins (Piontek et al., 2008). Claudin-5, -3, and -12 are localized at

the BBB (Nitta et al., 2003; Wolburg, 2006), whereas the pres-

ence of claudin-1 is controversial (Lee et al., 2003). Each claudin

regulates the diffusion of a group of molecules of a certain size.

For example, mice with claudin-5 deletion die as neonates due to

a size-selective loosening of the BBB for molecules <800 Da

(Nitta et al., 2003).

Selective downregulation of claudin-8 by kindling epilepsy

(Lamas et al., 2002) suggests that selective modulation of clau-

din expression in response to abnormal neuronal synchroniza-

tion may lead to BBB breakdown and brain edema, as seen in

epilepsy.

Claudin-5 is degraded by MMP-2 and MMP-9 after an ische-

mic insult, and both claudin-5 and occludin were found in the

surrounding astrocytes, but not in the brain endothelium, after

the BBB disruption (Yang et al., 2007). It is possible that increased

levels of occludin found in astrocytes and neurons in vascular

dementia, AD, and frontotemporal dementia (Romanitan et al.,

2007) might reflect the autophagy of the TJ proteins by the

surrounding cells after the BBB breakdown caused by chronic

hypoxia, aberrant angiogenesis, or both (Wu et al., 2005).

As with occludin, exposure of BEC to HIV-1 Tat protein de-

creases expression and alters distribution of claudin-5, which in

turn may contribute to BBB disruption in the course of HIV-1 in-

fection, and the entry of HIV-1 into the brain (Andras et al., 2005).

Other Junctional Proteins. Junctional adhesion molecule A

(JAM-A) (Bazzoni et al., 2005) and the endothelial cell-selective

adhesion molecule (ESAM) (Nasdala et al., 2002) are members

of the immunoglobulin (Ig) supergene family. A recent study in

spontaneously hypertensive rats has suggested that JAM-A is

upregulated throughout the body compared with the control
rats, and that this is not secondary to the hypertension (Waki

et al., 2007). When JAM-A is expressed in the nucleus tractus

solitarii, it raises arterial pressure, suggesting a prohypertensive

role of this TJ protein in the brain stem. It has been suggested

that altered expression of JAM-A, in addition to affecting the

junctional tightness, may also affect leukocyte trafficking, with

implications for immune status within the diseased CNS (Padden

et al., 2007). The role of JAM-A and ESAM in different brain

pathologies is still relatively poorly understood.

Cytoskeleton Link

ZO-1 Proteins. The integral membrane proteins of the TJ are

linked to the cytoskeleton via cytoplasmic multidomain scaffold-

ing proteins of the peripheral membrane-associated guanylate

kinase (MAGUK) family, such as ZO-1, ZO-2, and ZO-3 (Hawkins

and Davis, 2005). Besides providing the cytoskeletal anchorage

for the transmembrane TJ proteins, the MAGUK also control

correct spatial distribution of claudins though their PDZ binding

domains.

Significant differences in the incidences of TJ abnormalities re-

lated to reduced ZO-1 expression have been detected between

different types of lesions in MS, and between MS and control

white matter (Kirk et al., 2003). It has been shown that about

42% of vessel segments in active MS plaques have reduced

ZO-1 expression with severe plasma leakage, while about 23%

of vessels in inactive plaques also demonstrate reduced ZO-1

protein levels. It has been suggested that persistent endothelial

abnormalities associated with BBB leakage may contribute to

MS progression and have prognostic implications, and should

be considered when planning disease-modifying therapy (Leech

et al., 2007).

In a model of experimental diabetes in rats, the BBB perme-

ability to 14C-sucrose increases concurrently with decreased

production of ZO-1 and occludin at the BBB (Hawkins et al.,

2007). Degradation of these two TJ proteins has been related

to an increased plasma MMP activity, suggesting that peripheral

MMPs, in addition to central MMPs, could be targets for stabiliz-

ing BBB dysfunction. Since MMPs also participate in regulating

neurogenesis and angiogenesis, as for example during a repair

phase after stroke (Zhao et al., 2006), more work is needed to

clarify the therapeutic potential of MMP inhibition in different

brain pathologies.

It has been demonstrated that caveolin-1 regulates expression

of occludin and ZO-1 in BEC monolayers, a model of an in vitro

BBB (Song et al., 2007a). Loss of caveolin-1 facilitates the ability

of the chemokine CCL2, formerly called monocyte chemoattrac-

tant protein-1 (MCP-1), to permeablize the BBB. Thus, caveolin-1

may be critical in regulating inflammation at the BBB, and there-

fore could represent a novel therapeutic target for stabilizing the

BBB.

Actin. The importance of the cytoskeleton in establishing and

maintaining the BBB has become evident from studies in mice

lacking the actin-binding protein dystrophin, i.e., the mdx mice

(Nico et al., 2003). These mice exhibit an increase in the brain

vascular permeability due to disorganized a-actin cytoskeleton

in endothelial cells and astrocytes, as well as altered subcellular

localization of junctional proteins in the endothelium and the wa-

ter channel aquaporin-4 in the astrocytic endfeet. These findings

demonstrate that properly arranged actin filaments and their
Neuron 57, January 24, 2008 ª2008 Elsevier Inc. 181
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binding to the TJ and/or AJ proteins are critical for normal barrier

function.

HIV-1 gp120 and alcohol can reorganize the cytoskeleton and

induce stress fiber actin formation, causing increased perme-

ability of the human BBB endothelium (Shiu et al., 2007). It has

been suggested that alcohol-mediated changes in the BEC

monolayers may increase diffusion of plasma components and

viral penetration across the BBB, and therefore, especially at

levels attained in heavy drinkers, accelerate HIV-1 penetration

into the brain.

Adherens Junctions

The AJ are typically found intermingled with the TJ.

VE-cadherin. Within the AJ, the endothelial-specific integral

membrane protein VE-cadherin is linked to the cytoskeleton via

catenins, which belong to the family of armadillo proteins (Baz-

zoni and Dejana, 2004). At the BBB, expression and localization

of b-catenin, c-catenin, and p120cas is crucial for the functional

state of the AJ.

Caveolin-1-induced reductions in ZO-1 and occludin expres-

sion are associated with comparable alterations in the AJ pro-

teins, VE-cadherin, and b-catenin, which may enhance CCL2-

medited stimulation of transendothelial migration of monocytes

(Song et al., 2007a). Therefore, changes in the AJ proteins may

potentially contribute to increased paracellular BBB permeability

and leukocyte trafficking in the CNS. On the other hand, b-cate-

nin expression is not altered in MS lesions (Padden et al., 2007),

which would argue against the role of AJ in MS pathogenesis.

Recent in vitro and in vivo data show that VE-cadherin is re-

quired for endothelial integrity in quiescent vessels and for the

correct organization of new vessels (Lampugnani and Dejana,

2007). Several mechanisms by which VE-cadherin may regulate

endothelial functions have been proposed, such as (1) direct

activation of signaling molecules with a role in survival and orga-

nization of the actin cytoskeleton (e.g., PI3 kinase and Rac); (2)

regulation of gene transcription cofactors (e.g., b-catenin and

p120); and (3) formation of complexes with growth factor recep-

tors, as, for example, with the vascular endothelial growth factor

(VEGF) receptor 2 (VEGFR-2) (also called Flk-1), and modulation

of VEGFR-2 signaling. The role of AJ in chronic neurodegenera-

tive disorders with documented functional and morphological

changes at the BBB, such as AD, Parkinson’s disease (PD),

MS, and others, remains mainly unexplored.

PECAM-1. Platelet endothelial cell adhesion molecule 1 (PE-

CAM-1), also known as CD31, is localized in the endothelial cell

contacts outside of the TJ. PECAM-1 is a major participant in

the migration of leukocytes across endothelium.

A chimeric, soluble form of PECAM-1 fused to human IgG-Fc

fragment (sPECAM-Fc) impairs migration of lymphocytes across

the brain endothelial monolayers and diminishes the severity of

EAE in a mouse model (Reinke et al., 2007). These findings sug-

gest a therapeutic potential of the sPECAM-Fc construct for

short-term treatments of diseases like MS.

A recombinant construct targeting a single-chain variable

fragment (scFv) for urokinase-type plasminogen activator (uPA)

to stably expressed PECAM-1 (anti-PECAM-1 scFv-uPA) accu-

mulates in the brain after intravascular injection, while unconju-

gated uPA does not (Danielyan et al., 2007). It lyses clots in the

cerebral arterial vasculature without hemorrhagic complications
182 Neuron 57, January 24, 2008 ª2008 Elsevier Inc.
and provides rapid and stable cerebral reperfusion. It has been

suggested that effective and safe thromboprophylaxis in the ce-

rebral arterial circulation by anti-PECAM-1 scFv-uPA represents

a prototype of a new heuristic to prevent recurrent cerebrovas-

cular thrombosis by using molecules expressed at the BBB as

therapeutic targets. More research is needed to explore the full

therapeutic potential of this novel approach.

PECAM-1 and the receptor for advanced glycation end prod-

ucts (RAGE) are required for AD amyloid b-peptide (Ab)-medi-

ated migration of monocytes across human BEC monolayers

(Giri et al., 2000). Whether blocking PECAM-1 would have a po-

tential therapeutic benefit in AD, and in other brain pathologies

associated with peripheral leukocyte infiltration, remains to be

determined.

BBB Transport Systems
The TJ-controlled paracellular impermeability of the brain capil-

lary endothelium implies that the hydrophilic molecules must

cross the endothelial wall transcellularly to reach their neuronal

targets or leave the brain (Deane and Zlokovic, 2007). In general,

transcellular bidirectional transport across the BBB can be clas-

sified into five main categories: carrier-mediated transport, ion

transport, active efflux transport, receptor-mediated transport,

and caveolae-mediated transport.

Carrier-Mediated Transport

Specific, carrier-mediated transport systems facilitate transport

of nutrients such as hexoses (glucose, galactose); neutral, basic,

and acidic AA and monocarboxylic acids (lactate, pyruvate,

ketone bodies); nucleosides (adenosine, guanosine, uridine); pu-

rines (adenine, guanine); amines (choline); and vitamins (Hawkins

et al., 2006; Simpson et al., 2007; Ohtsuki and Terasaki, 2007;

Deeken and Loscher, 2007; Spector and Johanson, 2007). The

concentration gradients for nutrients are generally in the direc-

tion from blood to brain. These are regulated by brain metabolic

needs, and by the concentrations of substrates in plasma.

GLUT1 glucose transporter, the L1 large neutral amino acid

transporter, the CNT2 adenosine transporter, and the monocar-

boxylate transporter 1 (MCT1) have been cloned from BBB-spe-

cific cDNA libraries (Pardridge, 2005).

GLUT1. The glucose transporter GLUT1 is of special impor-

tance because glucose is the main energy source for the brain

(Qutub and Hunt, 2005; Simpson et al., 2007). GLUT1 (mw =

55 kDa) is a member of a gene family of sodium-independent glu-

cose transporters, which is expressed exclusively at the BBB.

GLUT1 transports glucose and other hexoses across the BBB

(Figure 3B). The density of GLUT1 transporters at the abluminal

membrane is higher than at the luminal (Simpson et al., 2007).

The asymmetrical distribution of GLUT1 at the BBB provides

a homeostatic control for glucose influx into the brain by prevent-

ing glucose accumulation in the brain ISF at levels higher than

those in the blood.

Heterozygous mutations or hemizygosity of the GLUT1 gene

cause GLUT1 deficiency syndrome. GLUT1 deficiency syndrome

in humans is characterized by infantile seizures, developmental

delay, and acquired microcephaly. It is caused by haploinsuffi-

ciency of the BBB hexose carrier. GLUT1+/� mice that have

been generated by the targeted disruption of the promoter and

exon 1 regions of the mouse GLUT1 gene have epileptiform
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discharges on electroencephalography, impaired motor activity,

incoordination, microencephaly, decreased brain glucose up-

take, and substantially decreased brain GLUT1 expression in

brain capillaries (Wang et al., 2006). Human GLUT1 deficiency

syndrome and the mouse model are perfect examples of brain

disorders triggered by dysfunctional BBB transporters.

The expression of GLUT1 is controlled by hypoxia-inducible

factor-1 (HIF-1), a transcription factor which regulates the adap-

tive responses to hypoxia. HIF-1a accumulates in the rat cere-

bral cortex after transient global ischemia, which is associated

with corresponding increases in GLUT1 and other HIF-1a target

genes (Chavez and LaManna, 2002). The adult rat brain adapts

to prolonged moderate hypoxia with increased vascularity and

increased GLUT1 density at the BBB (Harik et al., 1996).

GLUT1 protein expression in brain capillaries is reduced in AD,

although this is not associated with changes in the GLUT1 mRNA

structure (Mooradian et al., 1997) or the levels of GLUT1 mRNA

transcripts (Wu et al., 2005). The surface area at the BBB avail-

able for glucose transport is substantially reduced in AD (Bailey

et al., 2004; Wu et al., 2005). These findings suggest that the AD

brain is subjected to a continuous shortage in energy metabo-

lites due to GLUT1 deficiency at the BBB.

Indeed, recent PET studies with (18)F-2-fluoro-2-deoxy-D-glu-

cose (FDG) have demonstrated that individuals diagnosed with

aging-associated cognitive decline have significantly reduced

glucose uptake in the right precuneus, posterior cingulate, right

angular gyrus, and bilateral middle temporal cortices prior to

conversion into AD (Hunt et al., 2007). These respective deficits

are more pronounced in AD patients and involve the frontal cor-

tices. Thus, individuals with mild cognitive impairment (MCI)

have reduced glucose transport across the BBB prior to neuro-

degeneration and brain atrophy.

Subsequent FDG-PET studies have confirmed that the re-

duced FDG uptake by the posterior cingulate gyri and parieto-

temporal lobes in AD patients is not due to brain atrophy (Samur-

aki et al., 2007). A longitudinal study using FDG-PET imaging

with the follow-up PET exams has suggested that reductions

of glucose utilization by the hippocampus during normal aging

can predict cognitive decline years in advance of the clinical di-

agnosis (Mosconi et al., 2008). Consistent with this concept, pre-

symptomatic early-onset autosomal dominant familial AD (FAD)

individuals carrying mutations in the presenilin-1 gene show

widespread AD-like reductions in FDG utilization in the absence

of structural brain atrophy (Mosconi et al., 2006).

In sum, the FGD-PET measures may serve as early biomarkers

for the preclinical diagnosis of AD. But more than that, these stud-

ies suggest the reductions in glucose uptake across the BBB may

precede the neurodegenerative process and brain atrophy in the

MCI cases converting to AD. Whether GLUT1 at the BBB can be

manipulated therapeutically to prevent the development of de-

mentia and control a chronic neurodegenerative process remains

to be explored. Future studies are likewise needed to increase

preclinical specificity in differentiating the types of dementias

based on the reduced glucose uptake across the BBB.

MCT1. Ketone bodies, such as R-beta-hydroxybutyrate and

acetoacetate, are energy sources for the brain. As with glucose

metabolism, monocarboxylate uptake by the brain is dependent

on the function and regulation of its own transporter system.
MCT1 is expressed at each membrane of the BBB (Simpson

et al., 2007). MCT1 mediates transport of lactate and other mono-

carboxylates in and out of the brain (Figure 3B). Recent studies in

diet-induced ketotic rats have demonstrated a substantial upre-

gulation of MCT1 and GLUT1 at the BBB, associated with an

increased extraction of plasma ketone bodies by the brain, but

no changes in CBF (Puchowicz et al., 2007). These findings sug-

gest that upregulation of the BBB transporters (e.g., MCT1 and

GLUT1), but not an increase in CBF, is critical for adapting brain

metabolism to energy metabolites available in the plasma.

Amino Acid Transporters. The existence of two facilitative

transporters for AA, i.e., L1 and y+, on luminal and abluminal

membranes, provides the brain access to all essential AA (Haw-

kins et al., 2006). The sodium-independent L1 facilitative trans-

porter mediates transport of large neutral essential AA (e.g.,

leucine, isoleucine, valine, tryptophan, tyrosine, phenylalanine,

threonine, and methionine). The y+ system mediates transport

of cationic AA, some of which are essential in the brain (i.e., ly-

sine), and some of which are nonessential in the adult brain

(e.g., arginine and ornithine) but are essential during a juvenile

period, as for example L-arginine, a precursor of nitric oxide

(NO) (Figure 3B).

Five sodium-dependent transporters for AA exist at the ablu-

minal membrane (Figure 3B). The abluminal systems have the

capability to actively transfer every naturally occurring AA from

the brain ISF to endothelial cells, and from there, into the circu-

lation. This provides a mechanism by which AA concentrations

in the brain ISF are maintained at approximately 10% of those

in plasma. For example, the ASC and A systems at the BBB

transport nonessential AA out of the brain.

The sodium-dependent system for the excitatory acidic AA

(EAAT), e.g., glutamate and aspartate, provides a mechanism

for net removal of potentially neurotoxic AA from the brain. It

also accounts for the low penetration of glutamate into the brain.

Excitotoxicity is defined as excessive exposure to the neuro-

transmitter glutamate or overstimulation of its membrane recep-

tors, leading to neuronal injury or death (Lipton, 2005). Excess

glutamate in brain fluids characterizes acute brain insults such

as traumatic brain injury and stroke. In addition, it has been sug-

gested that glutamate excitotoxcity is implicated in the neurode-

generative process in epilepsy (Alexander and Godwin, 2006),

amyotrophic lateral sclerosis (ALS) (Van Damme et al., 2005),

MS (Vallejo-Illarramendi et al., 2006), Huntington’s disease

(HD) (Cowan and Raymond, 2006), and AD (Lipton, 2005).

Glutamate transporters EAAT1, EAAT2, and EAAT3 determine

the levels of extracellular glutamate and are essential to prevent

excitotoxicity (Lipton, 2005). It has been demonstrated that

scavenging glutamate in the blood increases the efflux of excess

glutamate from the brain. For example, systemic treatment of

rats with oxalocaetate, a glutamate scavenging agent, prior to

or early after closed brain injury can afford brain neuroprotection

by reducing the level of glutamate in the blood, which promotes

efflux of glutamate from the brain (Zlotnik et al., 2007). Whether

the BBB EAAT glutamate transporter can be targeted therapeu-

tically to reduce glutamate levels in acute and chronic neurode-

generative disorders remains to be explored.

The sodium-dependent system for nitrogen-rich AA removes

glutamine and other nitrogen-rich AA (e.g., histidine and
Neuron 57, January 24, 2008 ª2008 Elsevier Inc. 183
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asparagine) from the brain. The facilitative transporters at the lumi-

nal side, xG
� and n, mediate transport of acidic AA and nitrogen-

rich AA from the endothelium to blood, respectively (Figure 3B).

Vitamins. The vitamins are transported in most cases by sep-

arate carriers through the BBB or choroid plexus, as, for exam-

ple, vitamins B1, B3, B5, or E (Spector and Johanson, 2007).

The exception is the sodium-dependent multivitamin transporter

for biotin, pantothenic acid, and lipoic acid.

Ion Transporters

The BBB has a high density of mitochondria, which reflects high

energy demands for active ATP-dependent transporters such as

the sodium pump (Na+, K+-ATPase). The sodium pump is local-

ized on the abluminal membrane (Vorbrodt, 1988) (Figure 3B). It

regulates sodium influx into the brain ISF in exchange for potas-

sium. Na+, K+-ATPase maintains the high concentration gradient

for Na+ at the BBB (extracellular > > intracellular), so that Na+-

dependent transport can occur. Sodium-potassium-two chlo-

ride (Na+-K+-2Cl�) cotransporter resides predominantly in the

luminal BBB membrane (O’Donnell et al., 2006). Na+-K+-2Cl�

cotransporter transports sodium, potassium, and chloride from

blood into the brain endothelium. Sodium-hydrogen exchanger

is expressed on the luminal membrane, whereas chloride-bicar-

bonate exchanger is expressed at each side (Taylor et al., 2006).

These two transporters play critical roles in regulating intracellu-

lar pH in the endothelium. The chloride-bicarbonate exchanger

also regulates active secretion of bicarbonate across the BBB.

The sodium-calcium exchanger is also present at the BBB. In

the forward mode (Na+ entry/Ca2+ extrusion), this exchanger

mediates Ca2+ efflux from the endothelium. In the presence of

altered Na+ gradients or under pathological circumstances, it

may transport calcium into the endothelium.

Active Efflux

Efflux of molecules from the brain endothelium can be initiated at

the luminal membrane, as in the case of the ATP-binding cassette

(ABC) transporters (Hermann and Bassetti, 2007). The multidrug

resistance transporter P-glycoportein (P-gp) is an ATP-depen-

dent efflux pump which mediates rapid removal of ingested toxic

lipophilic metabolites, such as many amphipatic cationic drugs

(Loscher and Potschka, 2005; Hermann and Bassetti, 2007).

P-gp is encoded in humans by the MDR1 gene and in rodents

by the mdr1a and mdr1b genes. In addition to P-gp, several mul-

tidrug resistance-associated proteins (MRPs) are expressed in

the brain microvessels. The MRPs, including the breast cancer

resistance protein (BCRP) and members of the organic anion

transporting plypeptide (OATP) family and the organic anion

transporter (OAT) family, mediate mainly the efflux of anionic

compounds (Figure 3C). These transporters have the potential

to work together to reduce penetration of many drugs into the

brain and increase their efflux from the brain.

Recent immunogold cytochemistry EM studies in rat and hu-

man brain tissue revealed that P-gp is expressed at the luminal

and abluminal membrane, as well as in pericytes and astrocytes

(Bendayan et al., 2006). Subcellularly, P-gp is distributed along

the nuclear envelope, in caveolae, cytoplasmic vesicles, Golgi

complex, and rough endoplasmic reticulum.

The possible role of the ABC transporters in the pathogenesis

and treatment of different brain disorders such as epilepsy or PD

is increasingly recognized. For example, one-third of patients
184 Neuron 57, January 24, 2008 ª2008 Elsevier Inc.
with epilepsy have drug-resistant epilepsy, which is associated

with an increased risk of death and debilitating psychosocial con-

sequences. A positive association between the polymorphism in

the MDR1 gene encoding P-gp (or ABCB1) and multidrug-resis-

tant epilepsy has been reported in a subset of epilepsy patients

(Siddiqui et al., 2003). However, the follow-up association genet-

ics studies did not support a major role for this polymorphism, as

recently reviewed (Tate and Sisodiya, 2007). Future association

genetics studies are needed to understand better whether P-gp

or some other members of the multidrug transporter gene family

at the BBB are involved in multidrug-resistant epilepsy and other

epilepsy phenotypes. Finally, as discussed below, it has been

suggested that mutation of the MDR1 gene may predispose car-

riers to damaging effects of pesticides and possibly other toxic

xenobiotics transported by P-gp, leading to a PD phenotype

(Droździk et al., 2003).

Peptide and Protein Transport

The peptide bond prevents dipeptides from using the L1 amino

acid facilitative transport system (Zlokovic et al., 1983). However,

the endothelial cells at the BBB express several transport sys-

tems for neuroactive peptides, such as arginine-vasopressin

(AVP) (Zlokovic et al., 1990), enkephalins (Zlokovic et al., 1987,

1989), tyrosine melanocyte-stimulating inhibitory factor 1 (Tyr-

MIF-1), delta-sleep inducing peptide (DSIP), luteinizing-hormone

releasing hormone (LHRH), and some cytokines and chemokines

(Zlokovic, 1995; Banks, 2006). Peptide transport system 1

(PTS-1) and 2 (PTS-2) at the abluminal membrane mediate efflux

of enkephalins/Tyr-MIF-1 and AVP, respectively, from the brain

to the blood (Banks, 2006) (Figure 3C). PTS-3, on the luminal

membrane, transports peptide T into the brain. PTS-4 transports

LHRH bidirectionally. The V1-vasporessinergic receptor is re-

quired for transport of AVP from blood to the brain (Zlokovic

et al., 1990). Since enkephalins are transported in the liver by

the OATP transporters, and since transport of endorphins is im-

paired in P-gp null mice, it would be of interest to determine the

overlap between PTS-1 and OATP at the BBB, and the role of

P-gp in the efflux of enkephalins across the BBB.

Large proteins, such as transferrin (Jefferies et al., 1984), low-

density lipoproteins (LDL) (Meresse et al., 1989), leptin (Zlokovic

et al., 2000a), immunoglobulin G (IgG) (Deane et al., 2005), insulin,

and insulin-like growth factor (Pardridge, 2005) use receptor-me-

diated transport systems to cross the BBB. To date, the leptin

BBB receptor (OBR) and the transferrin BBB receptor have

been cloned (Pardridge, 2005) (Figure 3C). Receptor-mediated

transport systems at the BBB have been used as targets for

drug delivery to the brain via a strategy known as Trojan horses:

different growth factors or anti-sense agents that normally do not

cross the BBB, or immunoliposomes carrying naked DNA, can be

conjugated to monoclonal antibodies against one of the BBB re-

ceptors (e.g., insulin and transferrin). The monoclonal antibodies

act as surrogate ligands and can be used to carry conjugated

neurotherapeutics across the BBB (Pardridge, 2007).

The rates of carrier-mediated or receptor-mediated transcyto-

sis of peptides and proteins across the BBB are typically three

orders of magnitude lower compared with large neutral AA (Zlo-

kovic et al., 1985). It is of note that several neuroactive peptides

and proteins are active in the brain at low concentrations. Thus,

slow transport rates from blood to brain may act to limit the



Neuron

Review
accumulation of neuropeptides in the brain ISF. Uptake of most

circulating peptides by the brain can be compared with uptake of

drugs such as acetaminophen, which exerts analgesic activity

with an uptake of only 0.2%/g brain, or morphine, which has

an uptake of <0.02%/g.

Caveolae

Raft-dependent endocytosis is cholesterol sensitive, clathrin in-

dependent internalization of ligands and receptors from the

plasma membrane (Lajoie and Nabi, 2007). It encompasses en-

docytosis of caveolae, smooth plasmalemmal vesicles that form

subdomains of cholesterol and sphingolipid-rich rafts that are

enriched in caveolin-1. The caveolae control transcellular per-

meability by regulating endocytosis, transcytosis, and signaling

in lipid-based microdomains of the BBB (Parton and Richards,

2003). The caveolar membranes contain receptors for transfer-

rin, insulin, albumin, ceruloplasmin, RAGE, LDL, HDL, interleu-

kin-1, and vesicle-associated membrane protein-2 (Wolburg,

2006) (Figure 3C). Signaling complexes at caveolin-1 include

heterotrimeric G proteins, members of the MAPK pathway, src

tyrosine kinase, protein kinase C, and the endothelial NO syn-

thase. The involvement of caveolin-1 in NO and calcium signaling

has been demonstrated in caveolin-1-deficient mice (Drab et al.,

2001). VEGFR-2 (Labrecque et al., 2003) and P-gp (Jodoin et al.,

2003) are also closely associated with caveolin-1. Caveolin-1

can also influence the levels of TJ proteins in BEC (Song et al.,

2007a). The role of caveolae in BBB functions in health and dis-

ease remains to be explored.

Enzymatic BBB
Endothelial cells of the BBB provide a metabolic barrier by ex-

pressing a number of enzymes that modify endogenous and ex-

ogenous molecules, which otherwise could bypass the physical

barrier and negatively affect neuronal function (Pardridge, 2005).

The capillary endothelium, pericytes, and astrocytes express
a variety of ectoenzymes on the plasma membranes, including

aminopeptidases, endopeptidases, cholinesterase, and others.

Passive Transport by the Brain Fluids
Brain ISF-CSF ‘‘bulk flow’’ mediates transport of molecules into

the CSF at a slow rate, irrespective of their size (Davson, 1976;

Zlokovic, 2005). The CSF acts as a sink for potentially toxic

molecules and metabolic waste products. Toxic molecules and

metabolic waste products are removed from the CSF back

into the circulation by active transport or facilitated diffusion

across the choroid plexus epithelium, or by vacuolar transport

across the epithelial arachnoid granulations.

Neurovascular Unit
Endothelium, the site of anatomical BBB, neurons, and non-

neuronal cells (e.g., pericytes, astrocytes, and microglia) together

form a functional unit, often referred to as a neurovascular unit

(Figure 4A) (Lo et al., 2003; Iadecola, 2004; Hawkins and Davis,

2005; Zlokovic, 2005). The close proximity of different nonneuro-

nal cell types with each other and with neurons allows for effective

paracrine regulations that are critical for normal CNS functioning

and disease processes (Boillée et al., 2006a; Deane and Zlokovic,

2007; Lok et al., 2007). These include regulation of hemodynamic

neurovascular coupling, microvascular permeability, matrix in-

teractions, neurotransmitter inactivation, neurotrophic coupling,

and angiogenic and neurogenic coupling (Figure 4B).

Vascular versus Neuronal Origin of Brain Disorders

Brain disorders may have a vascular origin (Figure 4A, arrow 1).

Vascular cells, i.e., endothelium and pericytes, can directly affect

neuronal and synaptic functions through changes in the blood

flow, the BBB permeability, nutrient supply, faulty clearance of

toxic molecules, failure of enzymatic functions, the altered secre-

tion of trophic factors and matrix molecules, abnormal expres-

sion of vascular receptors, or induction of ectoenzymes.
Figure 4. Schematic of the Neurovascular Unit
(A) Endothelial cells and pericytes are separated by the basement membrane. Pericyte processes sheathe most of the outer side of the basement membrane. At
points of contact, pericytes communicate directly with endothelial cells through the synapse-like peg-socket contacts. Astrocytic endfoot processes unsheathe
the microvessel wall, which is made up of endothelial cells and pericytes. Resting microglia have a ‘‘ramified’’ shape. In cases of neuronal disorders that have
a primary vascular origin, circulating neurotoxins may cross the BBB to reach their neuronal targets, or proinflammatory signals from the vascular cells or reduced
capillary blood flow may disrupt normal synaptic transmission and trigger neuronal injury (arrow 1). Microglia recruited from the blood or within the brain and the
vessel wall can sense signals from neurons (arrow 2). Activated endothelium, microglia, and astrocytes signal back to neurons, which in most cases aggravates
the neuronal injury (arrow 3). In the case of a primary neuronal disorder, signals from neurons are sent to the vascular cells and microglia (arrow 2), which activate
the vasculo-glial unit and contributes to the progression of the disease (arrow 3).
(B) Coordinated regulation of normal neurovascular functions depends on the vascular cells (endothelium and pericytes), neurons, and astrocytes.
Neuron 57, January 24, 2008 ª2008 Elsevier Inc. 185
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Examples include, but are not limited to, cerebrovascular disor-

der (stroke), vascular dementia, hypertension, diabetes, apolipo-

protein 34 (apoE4) genotype, hyperlipidemias, homocysteinemia,

hypercoagulant blood profile, familial cerebrovascular forms of

AD (e.g, Dutch, Flemish, and Iowa Ab-precursor protein [APP]

mutations) and vascular forms of late-onset AD (Iadecola, 2004;

Zlokovic, 2005). In response to a vascular insult, signals from neu-

rons and astrocytes (Figure 4A, arrow 2) recruit microglia, which,

when activated, secrete several proinflammatory cytokines (Man

et al., 2007) (Figure 4A, arrow 3). This further aggravates the neu-

ronal injury and synaptic dysfunction. In the case of a primary

neuronal disorder (Figure 4A, arrow 2), vasculo-glial activation

follows (Figure 4A, arrow 3), and may critically modify progression

of the disease (Boillée et al., 2006a; Lok et al., 2007).

Pericytes

Pericytes were originally discovered by Rouget in 1870 as peri-

vascular cells adjacent to capillaries. They belong to the vascular

smooth muscle cell (VSMC) lineage (Allt and Lawrenson, 2001).

Pericytes share a common basement membrane with endothe-

lial cells (Figure 4A), and have many cytoplasmic processes

that encircle capillaries. There may be up to 90 processes with

a width of 300 to 800 nm per 100 mm of capillary length, suggest-

ing that pericytes might encircle 30% to 70% of the capillary wall.

Pericyte-to-endothelia ratio in the brain is high, i.e., 1:3 com-

pared with 1:100 in striated muscles. The coverage of BEC by

pericytes varies considerably between different microvessel

types (Allt and Lawrenson, 2001).

The location of pericytes on the microvessel appears to be

functionally determined. The distance between pericytes and

BEC is estimated to be only 20 nm. Through long cytoplasmic

processes that extend along and encircle the endothelial tube,

pericytes make focal contacts with BEC through specialized

junctions (von Tell et al., 2006). At points of contact, communi-

cating gap junctions, TJ and AJ have been identified (Allt and

Lawrenson, 2001). Given such a close relationship with BEC,

and the occurrence of synapse-like peg-socket contacts, peri-

cytes are ideally suited to have many influences on brain micro-

circulation.

In the CNS, pericytes contribute to stability of microvessels

and cover a major part of the abluminal endothelial surface

(von Tell et al., 2006). In addition to providing mechanical stabil-

ity, pericytes predominantly influence vessel stability by matrix

deposition and by the releae and activation of signals that pro-

mote BEC differentiation and quiescence (Armulik et al., 2005).

The molecular mechanisms by which pericytes mediate vascular

stability are not understood. The literature is conflicting regard-

ing whether pericytes protect vessels from regression.

Perivascular pericytes release a large number of growth fac-

tors and angiogenic molecules which regulate microvascular

permeability, remodeling, and angiogenesis (Dore-Duffy and La

Manna, 2007). Several ligand-receptor systems have been impli-

cated in regulating vessel maturation and stability through inter-

actions between pericytes and BEC (von Tell et al., 2006). These

pathways involve transforming growth factor (TGF)-b and its re-

ceptor system, angiopoetins 1 and 2 and their receptor Tie2,

platelet-derived growth factor (PDGF)-B and its receptor PDGF

receptor beta (PDGF-b), and sphingosine-1-phosphate (S1P)

and its receptor S1P1. For example, endothelial-specific abla-
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tion of PDGF-B in mice results in mutants that survive into adult-

hood and exhibit persistent pathological changes, including

brain microhemorrhages, focal astrogliosis, and kidney glomer-

ulus abnormalities (Bjarnegard et al., 2004).

Localization studies of pericytes and BEC during angiogenesis

suggest that growing microvessels of the human telencephalon

are formed by a pericyte-driven angiogenesis (Virgintino et al.,

2007). BEC are preceded by and guided by migrating pericytes

during organization of the growing vessel wall. In vitro studies

with cultured pericytes and BEC have suggested that pericytes

strengthen the BBB permeability and maintain the vascular in-

tegrity and maturation (Nakagawa et al., 2007).

Recent studies have shown that pericytes are contractile cells

which regulate brain capillary blood flow through contraction and

relaxation (Peppiatt et al., 2006). In this regard, pericytes may

function similarly to VSMC in arterioles and small pial arteries

in the brain, which regulate CBF responses (Chow et al., 2007).

It has been speculated that pericytes and VSMC have roles in

the development of neuropathology in hypertension, diabetes,

MS, CNS tumor formation, and AD (Wyss-Coray et al., 2000;

Allt and Lawrenson, 2001; von Tell et al., 2006). Recently, it

has been shown that cerebral VSMC in AD individuals have a hy-

percontractile phenotype that leads to arterial hypercontractility

and aberrant responses to vasoactive stimuli (Chow et al., 2007).

Still, much remains to be learned about the role of pericytes in

chronic neurodegenerative disorders. This exciting field has

just begun to open up.

Basement Membrane and Matrix

The basement membrane separates BEC from its neighboring

cells, pericytes and astrocytes (Figure 4A). BEC, pericytes, and

astrocytes cooperate to generate and maintain the basement

membrane and the unique barrier properties of the BBB. The

basement membrane is composed of different extracellular ma-

trix (ECM) structural proteins (e.g., collagen and laminin). Matrix

adhesion receptors are expressed in the vascular cells, neurons,

and their supporting glial cells (i.e., microglia, oligodendroglia,

and astrocyte end-feet) (del Zoppo et al., 2006). Cells within ce-

rebral microvessels express the integrin and dystroglycan fami-

lies of matrix adhesion receptors. The functional significance of

these receptors is only now being explored.

Integrins play a key role in mediating endothelial signaling, cell

migration, and brain capillary tube formation during angiogene-

sis (del Zoppo and Milner, 2006). Matrix adhesion receptors

are essential for the maintenance of the integrity of the BBB.

Modulation of these receptors contributes to alterations in the

barrier in the disease state. Growth factors, such as VEGF, are

bound to ECM proteins and can be activated in situ by MMPs

(Zlokovic, 2006). In turn, this can regulate postischemic angio-

genic and neurogenic repair responses (Zhao et al., 2006). Sig-

nificant alterations in cellular adhesion receptors and their matrix

ligands occur during focal cerebral ischemia, MS, EAE, certain

tumors of the CNS, and arteriovenous malformations, which

support their functional significance in the normal state.

Astrocytes

Astrocytes are positioned between neurons, pericytes, and cap-

illary BEC, and communicate with these cells via their numerous

‘‘foot processes’’ (Figure 4A). Astrocyte-BEC interactions have

a major role in regulating brain water and electrolyte metabolism
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under normal and pathological conditions (Abbott et al., 2006).

Astrocytes contribute to brain communication pathways by mod-

ulating synaptic transmission (Newman, 2003) and neuronal firing

thresholds and plasticity (Nedergaard et al., 2003). In the subforn-

ical organ, astrocytes act as a ‘‘salt sensor,’’ and, using lactate as

a signal, control local activity of neurons involved in neural,

hormonal, and behavioral responses underlying sodium homeo-

stasis (Shimizu et al., 2007).

VSMC in small arteries (Iadecola, 2004) and astrocytes con-

tribute to neurovascular coupling, which synchronizes neuronal

metabolic demands to local CBF regulation (Anderson and Ne-

dergaard, 2003). In brain slices, astrocytes detect glutamate-de-

pendent synaptic activity, which causes vasodilation by a mech-

anism that involves prostanoids (Zonta et al., 2003). In vivo,

photolysis of caged Ca2+ in astrocytic endfeet in the somatosen-

sory cortex of mice results in an increase in CBF (Takano et al.,

2006). Abnormal astrocytic activity coupled to vascular instabil-

ity has been observed in AD models (Takano et al., 2007).

Early studies with EM markers injected into the CSF demon-

strated that astrocytes did not structurally contribute to the

BBB (Brightman and Reese, 1969). However, the src-suppressed

C-kinase substrate (SSeCKS) in astrocytes is responsible for the

decreased expression of VEGF and increased release of the anti-

permeability factor angiopotein-1 (Lee et al., 2003). It has been

suggested that SSeCKS overexpression can increase the ex-

pression of the TJ molecules and decrease paracellular perme-

ability in endothelial cells, suggesting that astrocytes may regu-

late the microvascular permeability. However, conflicting data

have been reported regarding possible roles of astrocytes in con-

trolling BBB differentiation and permeability. More studies are

needed to clarify these issues.

Microglia

Microglia were first described in 1932 by del Rio-Hortega as

a distinct class of glial cells. Microglia play critical roles in innate

and adaptive immune responses of the CNS. Microglia are de-

rived from leptomeningeal mesenchymal cells, which enter the

brain and transform into microglia (Bechmann et al., 2007). The

process involves (1) passage across the postcapillary venules

into the Virchow-Robin spaces, and (2) subsequent progression

across the glia limitans into the neuropil. This second step in-

volves perivascular antigen recognition and the induction of

MMPs. Circulating monocytes provide another important source

of microglia in the brain (Bechmann et al., 2005). The infiltration of

blood-derived monocytic cells and their morphologic transfor-

mation into microglia in zones of acute, anterograde (Wallerian)

axonal degeneration have been demonstrated.

In the absence of pathology, the ‘‘resting’’ microglia are cells

with small bodies and long, thin processes. Brain pathology is

associated with activation of microglia. Activated microglia

lose the long extensions typical of the resting microglia, and

show stubby processes. During activation, microglia transform

from ‘‘ramified’’ to an ‘‘ameboid’’ form, and finally to a phagocytic

form. This evolution is associated with changes in surface anti-

gen expression and cytokine release.

Studies with rat bone marrow chimeras have demonstrated

that a subset of endogenous CNS cells, commonly termed ‘‘peri-

vascular microglial cells,’’ is bone marrow derived (Hickey and

Kimura, 1988). These perivascular cells are fully competent to
present antigens to lymphocytes in an appropriately restricted

manner. Trafficking signals that guide the transmigration of leu-

kocytes into the brain, as well as leukocyte migratory routes,

have been well defined (Man et al., 2007). The connection of mi-

croglia in the brain with circulating monocytes and bone marrow

cells has changed our concept of the brain as an immune privi-

leged site that separates central microglia from its peripheral

precursor pool.

In addition to being involved in MS, mononuclear phagocytes

from blood are also recruited in other neurodegenerative dis-

eases, such as AD, via transport across the BBB. Chemokines

in the brain can recruit immune cells from the blood or from within

the brain (Britschgi and Wyss-Coray, 2007). Disrupting this line of

communication exacerbates the disease process in a mouse

model of AD, as shown in AD mice deficient in Ccr2, a chemokine

receptor on microglia that normally mediates the accumulation

of mononuclear phagocytes at sites of inflammation, but is linked

to more rapid disease progression when absent (El Khoury

et al., 2007).

Angiogenesis and Neurogenesis

The mechanisms involved in wiring the neural and vascular net-

works share many similarities (Carmeliet and Tessier-Lavigne,

2005). These include shared growth factors and receptors, sim-

ilar signaling cues for new cell formation and migration, and

shared physical space, as a result of parallel anatomic patterning

and development. For example, VEGF and its receptor VEGR2

regulate axonal growth, neuronal survival, and new vessel forma-

tion (Greenberg and Jin, 2005). Neuropilin receptor (Nrp1) binds

VEGF 164/5 on vascular cells and is a coreceptor for the axon

guidance molecule semaphorin 3A. Fibroblast growth factor-2

(FGF-2), TGF-b, and PDGF are angiogenic factors that induce

proliferation of neural precursors. The four major families of neu-

ronal guidance cues, ephrins, semaphorins, slits, and netrins, di-

rect patterning of the vascular system.

In the adult brain, there are several discrete foci of persistent

angiogenesis (Greenberg and Jin, 2005). Angiogenesis is tightly

coupled to neurogenesis in the adult mammalian brain (Palmer

et al., 2000) and the avian brain (Louissaint et al., 2002). Gonadal

steroid-mediated induction of VEGF in higher vocal control (HVC)

nucleus in the adult avian brain occurs concurrently with VEGFR2

expression in HVC endothelial cells (Louissaint et al., 2002). This

leads to sprouting angiogenesis and release of brain-derived

nerve growth factor (BDNF) from steroid-stimulated HVC endo-

thelium, which, in turn, recruits neurons in the adult HVC.

The major progenitor pools of the adult human brain include

ventricular zone neuronal progenitor cells, hippocampal neuronal

progenitors, and parenchymal glial progenitor cells (Goldman,

2007). Newly generated cells in the adult mouse hippocampus

have neuronal morphology, membrane properties, action poten-

tials, and functional synaptic inputs similar to those found in ma-

ture dentate granule cells (van Praag et al., 2002). New neurons,

similar to mature granule neurons, form contacts by axosomatic,

axodendritic, and axospinous synapses (Toni et al., 2007). New

dendritic spines primarily synapse on multiple-synapse boutons,

suggesting that initial contacts are preferentially made with pre-

existing boutons already involved in a synapse.

In sprouting angiogenesis, specialized endothelial tip cells

lead the outgrowth of blood-vessel sprouts toward gradients of
Neuron 57, January 24, 2008 ª2008 Elsevier Inc. 187
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VEGF (Gerhardt et al., 2003). Recent work has demonstrated

that inhibition of Notch signaling with g-secretase inhibitors or

genetic inactivation of Notch ligand delta-like 4 (Dll4) signaling

promotes increased numbers of tip cells, which control vessel

sprouting in the mouse retina (Hellstrom et al., 2007). This work

has suggested that modulators of Dll4 or Notch signaling, as

for example g-secretase inhibitors developed for AD, might be

used as pharmacological regulators of angiogenesis.

The importance of angiogenesis and neurogenesis in brain re-

modeling after an acute ischemic insult is well recognized (Zhang

et al., 2007). Yet the prevailing concept states that the aging

brain affected by a chronic neurodegenerative process has rela-

tively modest regenerative capability. Whether brain repair can

be enhanced by new therapeutic approaches remains to be

addressed by future studies.

Neurovascular Uncoupling in the Aging Brain
Brain varies its blood flow according to local tissue metabolic

demands. An adequate blood supply is ensured by a tight cou-

pling between neural activity and blood flow. The link between

regional synaptic activity and regional CBF, termed functional

hyperemia, is the basis for functional MRI, which has revolution-

ized our understanding of human brain in health and disease

(Drake and Iadecola, 2007). Reductions in resting CBF or altered

responses to brain activation may occur in different CNS regions

in AD, PD, MS, and other CNS disorders (Lo et al., 2003; Iade-

cola, 2004; Drake and Iadecola, 2007; Lok et al., 2007).

Modest, 20% reductions in CBF, as seen in the aging brain, are

associated with diminished cerebral protein synthesis (Hoss-

mann, 1994). More severe regional reductions in CBF, as seen

in chronic neurodegenerative disorders, lead to shifts in intracel-

lular pH and water, and accumulation of glutamate and lactate in

brain ISF (Drake and Iadecola, 2007). CBF reductions greater than

50% impair ATP synthesis and decrease the ability of neurons to

fire action potentials. Finally, severe reductions in CBF (>80%),

similar to those found in ischemic stroke, lead to electrolyte dys-

balance and ischemic neuronal death. Changes in the brain cap-

illary unit, degeneration of brain capillaries, reductions in resting

CBF, or a combination thereof maybe the first signs of the disease

process prior to neuronal changes and neurodegeneration.

Alzheimer’s Disease
AD is characterized by a progressive cognitive decline associ-

ated with neurovascular dysfunction (Iadecola, 2004; Zlokovic,

2005), accumulation of neurotoxic Ab on blood vessels and in

the brain parenchyma (Rovelet-Lecrux et al., 2006; Hardy,

2006; Deane and Zlokovic, 2007), and intraneuronal lesions, or

neurofibrillar tangles (Lee et al., 1991; Santacruz et al., 2005;

Tanzi, 2005). Ab plays a central role in the development of AD

pathology (Snyder et al., 2005; Tanzi, 2005; Hardy, 2006; Rove-

let-Lecrux et al., 2006; Selkoe, 2001; Deane and Zlokovic, 2007;

Haass and Selkoe, 2007). Brain Ab is elevated in patients with

sporadic AD and inherited FAD. Increased Ab42 levels in the

brain ISF result in the formation of neurotoxic Ab oligomers

(Haass and Selkoe, 2007). Neurovascular accumulation of Ab

and vascular deposition of amyloid result in the development

of cerebral amyloid angiopathy (CAA) (Ghiso and Frangione,

2002; Greenberg et al., 2004).
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Most AD cases (�99%) present with the late onset, i.e., in

individuals over 65 years of age, without evidence of Mendelian

genetic transmission (Tanzi and Bertram, 2005). Late-onset AD

individuals typically do not have increased production of Ab. Ac-

cording to current concepts, Ab accumulates in the brain in AD

likely due to its faulty clearance from the brain (Zlokovic et al.,

2000b; Selkoe, 2001; Tanzi et al., 2004; Holtzman and Zlokovic,

2007). In mouse models of AD, including APP-overexpressing

APPsw+/� mice and transgenic APP mice harboring vasculo-

tropic Dutch and Iowa mutations, dense plaques develop initially

on blood vessels or as a classical CAA (Deane et al., 2004a; Ku-

mar-Singh et al., 2005). It is believed that plaques are generated

on blood vessels due to deficient Ab clearance across the BBB

or along Virhoff-Robin arterial spaces in the brain.

Microvascular Pathology

Reduced microvascular density, an increased number of frag-

mented vessels with fewer intact branches, atrophic string ves-

sels, increased irregularity of capillary surfaces, marked changes

in the vessel diameter, capillary basement membrane thicken-

ing, and collagen accumulation in the basement membrane

have been described in AD (Farkas and Luiten, 2001; Bailey

et al., 2004).

BBB Influx of Ab

RAGE is a major influx transporter for Ab across the BBB (Deane

et al., 2003). In AD and transgenic models of b-amyloidosis,

RAGE expression increases in the affected cerebral vessels,

microglia, and neurons (Yan et al., 1996; Deane et al., 2003; Do-

nahue et al., 2006). RAGE binds to different forms of Ab and me-

diates its pathophysiologic cellular responses. Under physiolog-

ical conditions, RAGE is expressed at relatively low levels at the

BBB, except at the endothelium of larger brain microvessels.

However, the accumulation of RAGE ligands (e.g., AGE proteins

and Ab) in the aging brain increases cerebrovascular RAGE ex-

pression. It has been shown that Ab/RAGE interaction at the lu-

minal membrane of the BBB (Figure 5A) results in (1) transcytosis

of circulating Ab across the BBB into the brain parenchyma and

its binding to neurons; (2) NF-kB-mediated endothelial activation

resulting in secretion of proinflammatory cytokines (e.g., tumor

necrosis factor-a and interleukin-6), the expression of adhesion

molecules (e.g., ICAM-1 and VCAM); and (3) generation of endo-

thelin-1, which suppresses CBF. These cellular events may be

implicated in disease onset and progression in AD models, and

possibly in AD.

Ab/RAGE interaction contributes to the neuronal killing directly

by producing oxidative damage to RAGE-expressing neurons,

and indirectly, by activating microglia (Yan et al., 1996). Inhibition

of Ab/RAGE interaction in the affected vasculature inhibits cyto-

kine production, oxidant stress, and Ab BBB transport (Deane

et al., 2003). Thus, RAGE is an important therapeutic target in

AD. The inhibitors of Ab/RAGE interaction have been shown to

stabilize the BBB functions, reduce neuroinflammation, and

improve the resting CBF and the CBF responses to brain activa-

tion. Some RAGE/Ab blockers are currently being tested in AD

patients.

Recent work has confirmed that blood is a major, chronic

source of soluble Ab peptides in the brain (Clifford et al., 2007).

In rats, Ab peptides cross a defective BBB by passive diffusion

followed by selective binding to certain subtypes of neurons.
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However, the increased CSF-to-plasma albumin ratios in AD pa-

tients with MRI-evidenced brain atrophy do not correlate with

CSF-to-plasma Ab40 and Ab42 ratios (Matsumoto et al., 2007),

suggesting that diffusion is not a key factor regulating Ab in the

CNS. Earlier studies in guinea pigs have demonstrated that

plasma-derived Ab40 and Ab42 cross the intact BBB at slow

rates by sharing a common transport system (Martel et al.,

1996a). Subsequent work in AD mice has identified that RAGE

is a shared influx transporter for Ab peptides at the BBB (Deane

et al., 2003). Therefore, specific influx and efflux transport mech-

anisms for Ab play a key role in regulating brain Ab (Deane and

Zlokovic, 2007).

In addition to RAGE, apolipoprotein J (apoJ) can facilitate

transport of plasma-derived Ab across the BBB (Zlokovic,

1996). In contrast, circulating apoE2 and apoE3, but not apoE4,

block transport of plasma Ab into the brain (Martel et al., 1997).

Transport of Ab-apoJ complexes across the BBB is mediated

via gp330/megalin or low-density lipoprotein receptor related

protein 2 (LRP2) (Zlokovic et al., 1996). The role of LRP2 in trans-

port of Ab is still not completely understood because LRP2 is sat-

urated by apoJ at physiological plasma levels (Shayo et al., 1997).

In addition, apoJ is not a major transport protein for Ab in human
plasma (Sagare et al., 2007). Whether apoJ/LRP2-mediated

transport of Ab in the CNS has a role in disease progression

and development of Ab pathology in AD has not been explored.

BBB Clearance of Ab

Low-density lipoprotein receptor related protein 1 (LRP1) is a ma-

jor efflux transporter for Ab across the BBB (Shibata et al., 2000).

LRP1 is a member of the LDL receptor family and acts as a mul-

tifunctional scavenger and signaling receptor. Binding of Ab to

LRP1 at the abluminal side of the BBB initiates Ab clearance

from brain to blood via transcytosis across the BBB (Figure 5A)

(Shibata et al., 2000; Deane et al., 2004a; Cirrito et al., 2005;

Bell et al., 2007). In the liver, LRP1 mediates Ab systemic clear-

ance (Tamaki et al., 2006).

b-secretase cleaves the N terminus extracellular domain of

LRP1 (von Arnim et al., 2005), which releases soluble LRP1

(sLRP1) in plasma. In humans, sLRP1 normally binds 70%–

90% of Ab in plasma (Sagare et al., 2007). It has been shown

that binding of Ab to sLRP1 is compromised in AD, which in

turn may contribute to elevated Ab levels in the brain. Recombi-

nant LRP1 clusters, such as cluster IV (LRP-IV), can effectively

sequester Ab in AD plasma and APPsw+/� mice, resulting in Ab

efflux from the mouse brain (Sagare et al., 2007). Thus, LRP-IV
Figure 5. The Role of the BBB in the Pathogenesis of Alzheimer’s Disease, or AD
(A) Transport equilibrium for amyloid b-peptide, or Ab. The cell-surface LRP1 on the abluminal membrane binds different forms of Ab (e.g., monomers, oligomers,
and aggregates) and initiates Ab transcytosis across the BBB followed by its export into the circulation. In the case of Ab overload, LRP1 loses its normal protein
conformation and undergoes the accelerated proteosomal degradation. Ab efflux is influenced by its transport binding proteins in the brain, e.g., apoE and apoJ,
or a2-macroglobulin. b-secretase (BACE) cleaves the N terminus extracellular domain of LRP1, which generates the soluble form of LRP1 (sLRP1). In human
plasma, >70% of Ab is normally bound to sLRP1. Native plasma sLRP1 is a major endogenenous peripheral ‘‘sink’’ agent for Ab. The remaining Ab in the plasma
is bound to other Ab transporting proteins (e.g., apoJ). A small fraction of plasma Ab is free. On the luminal membrane, free Ab that escapes the sLRP1 surveillance
in the blood interacts with the receptor for advanced glycation end products (RAGE). Ab/RAGE interaction mediates transport of Ab from blood to brain, and
activates the endothelium through reactive oxygen species (ROS)-induced nuclear translocation of NF-kB. This triggers secretion of proinflammatory cytokines
(e.g., interleukin-6 [IL-6] and tumor necrosis factor-a [TNF-a]), the expression of adhesion molecules at the BBB (e.g., ICAM1 and VCAM), and secretion of en-
dothelin-1, a suppressor of the blood flow.
(B) The role of vascular genes. In AD, low levels of expression of the mesenchyme homeobox gene 2 (MEOX-2) in the brain endothelium inhibit vascular endothelial
growth factor (VEGF)-mediated angiogenesis, resulting in a premature apoptotic cell death, brain capillary regression, and reduced LRP1 expression. These
events lead to both Ab accumulation in the brain and brain hypoperfison. RAGE amplifies this pathogenic cascade. In small cerebral arteries, overexpression
of serum response factor (SRF) and myocardin (MYOCD), the two transcription factors that orchestrate the vascular smooth muscle cell (VSMC) phenotype, leads
to a hypercontractile VSMC phenotype overexpressing several SRF/MYOCD-regulated contractile proteins and the SRF-dependent genes that regulate Ca2+

homeostasis. These events reduce resting blood flow and suppress brain-activation-controlled blood flow responses. The BBB compromise and a neuroinflam-
matory response both aggravate synaptic and neuronal dysfunction, resulting in neuronal loss and dementia.
Neuron 57, January 24, 2008 ª2008 Elsevier Inc. 189
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and other LRP1 fragments have a therapeutic potential as novel

Ab clearance agents or sLRP replacement therapy for AD with an

enhanced peripheral ‘‘sink’’ action for Ab.

Reduced expression of LRP1 has been reported during normal

aging in rodents and nonhuman primates, and in AD individuals

associated with positive staining of cerebral vessels for Ab40

and Ab42 (Shibata et al., 2000; Deane et al., 2004a; Donahue

et al., 2006). Mice with severe functional deficiency in LRP1 at

the BBB develop accumulations of Ab when crossed with APP-

overexpressing mice (Van Uden et al., 2002). However, the over-

expression of LRP-IV minigene on neurons promotes Ab reten-

tion in the CNS, suggesting that LRP1 on neurons mediates

retention of Ab in the brain (Zerbinatti et al., 2004). In contrast,

LRP1 or another lipoprotein receptor on astrocytes mediates

degradation of amyloid deposits via apoE (Koistinaho et al.,

2004). Therefore, different cells of the vasculo-glial unit may act

together to eliminate Ab. Binding of Ab to apoJ, apoE, and

a2-macroglobulin critically alters Ab clearance rates from the

brain (Figure 5A) and can influence its vascular and parenchymal

accumulation (Holtzman and Zlokovic, 2007; Bell et al., 2007).

Mice that lack P-gp at the BBB (knockouts for mdr1a and

mdr1b genes) have reduced clearance of Ab from the CNS and

lower levels of LRP1 in brain capillaries (Cirrito et al., 2005). Cross-

ing mdr1a/mdr1b null mice with APP-overexpressing mice accel-

erates accumulation of Ab and amyloid deposition, raising a pos-

sibility that mdr1a and mdr1b genes may influence Ab clearance

either directly through P-gp or indirectly through LRP1.

In addition to receptor-mediated transport, free diffusion of Ab

via the ISF-CSF bulk flow contributes to Ab removal from the

CNS (Silverberg et al., 2003). The exact contribution of this path-

way to overall Ab clearance is not known. It has been estimated

that the diffusional component of Ab clearance might eliminate

up to 10%–15% of Ab in mice (Shibata et al., 2000).

Aberrant Angiogenesis

Recent findings suggest that degeneration of the BEC in AD and

AD models may reflect an aberrant angiogenesis. AD BEC ex-

press extremely low levels of the mesenchyme homebox gene

2 (MEOX-2), a transcription factor which normally regulates vas-

cular cell differentiation and remodeling, and whose expression

in the adult brain is restricted to the vascular system. Low levels

of MEOX-2 expression mediate abnormal angiogenic responses

of AD BEC to VEGF and other angiogenic factors (Wu et al.,

2005), resulting in premature vessel regression, reduced resting

CBF, and improper formation of the BBB (Figure 5B). Low levels

of MEOX-2 promote proteasomal degradation of LRP1, which

lowers the Ab clearing capability at the BBB, which in turn poten-

tially leads to Ab accumulation on the blood vessels. It has been

shown that Ab accumulations on the outer membrane of the

blood vessels are anti-angiogenic, and therefore might contrib-

ute to the observed reductions in the brain capillary density in

AD models and AD (Paris et al., 2004a, 2004b). Aberrant angio-

genesis may have an amyloidogenic effect in the brain due to

compromised BBB clearance of Ab (Deane et al., 2004b).

Arterial Component

Ab is a potent vasoconstrictor in cerebral circulation (Thomas

et al., 1996). In APP-expressing mice, impaired endothelium-

dependent regulation of neocortical microcirculation (Iadecola

et al., 1999) and reductions in functional hyperemia (Niwa
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et al., 2000) have been observed at an early stage. A mismatch

between CBF, metabolism, and brain activity has been shown

in sporadic AD (Smith et al., 1999; Bookheimer et al., 2000; Rui-

tenberg et al., 2005; Drake and Iadecola, 2007).

Pial and intracerebral arteries in AD are affected by CAA. The

VSMC layer is often reduced, resulting in the rupture of the vessel

wall and intracerebral bleeding (Ghiso and Frangione, 2002;

Greenberg et al., 2004). Pathogenic levels of vasculotropic mu-

tant forms of Ab (e.g., Dutch, Iowa, Arctic, Flemish, and Italian)

accelerate VSMC degeneration, contributing to hemorrhagic

strokes, as in familial forms of AD.

Recent studies have demonstrated that the expression of two

transcription factors that control VSMC cell differentiation,

namely serum response factor (SRF) and myocradin (MYOCD),

is increased in AD, resulting in a hypercontractile arterial pheno-

type, brain hypoperfusion, and diminished functional hyperemia

(Chow et al., 2007) (Figure 5B). These events may contribute to

hypoperfusion observed in AD brains.

Large cerebral arteries do not develop CAA. But in AD, they are

frequently affected by atherosclerosis (Casserly and Topol, 2004;

Beach et al., 2007). Atherosclerosis reduces brain perfusion and

may precipitate a chronic ischemic condition in AD. The Rotter-

dam Scan Study demonstrated that silent brain infarcts detected

with MRI are associated with dementia in elderly people (Vermeer

et al., 2003). The nun study found that demented AD individuals

with amyloid and tau pathology have numerous brain microin-

farctions (Snowdon et al., 1997). It has been suggested that cere-

brovascular disease and brain infarction may contribute to the

severity of cognitive decline in AD (Song et al., 2007b; Sheng

et al., 2007). However, the exact pathways by which atheroscle-

rosis and arteriolosclerosis contribute to cognitive decline, and

the relationship between vascular brain damage and white matter

hyperintensities on MRI and cognitive decline, are still not com-

pletely understood (Chui et al., 2006).

The link between ischemia and increased Ab production (Iade-

cola, 2004), on one hand, and the accumulation of hyperphos-

phorylated tau in cortical neurons and filament formation similar

to that present in human neurodegenerative tauopathies and AD

(Gordon-Krajcer et al., 2007; Wen et al., 2007), on the other hand,

have been reported in rodent models of stroke. Thus, brain hypo-

perfusion may create, at least in animal models, AD-like patho-

logical changes in the brain.

Vascular Factors

Vascular risk factors might be responsible for cognitive decline in

the elderly according to several epidemiologic studies, including

the largest population-based Rotterdam study (Hofman et al.,

1997; Ruitenberg et al., 2005). A number of risk factors for AD

and vascular dementia overlap, including old age, atherosclero-

sis, stroke, homocysteine, hypertension, hyperlipidemia, head

injury, transient ischemic attacks, high serum viscosity, throm-

bogenic factors, cardiac disease, apoE4 (Iadecola, 2004; Zlo-

kovic, 2005; de la Torre, 2006), and diabetes (Luchsinger et al.,

2007). Brains of AD patients are typically hypoperfused and hyp-

oxic compared with those of normal subjects. Notably, hypoxia

downregulates MEOX-2 in the brain endothelium (Wu et al.,

2005) and stabilizes the expression of MYOCD and SRF in the

VSMC in small cerebral arteries (Chow et al., 2007). It is possible

that hypoxia might be upstream of the gene expression changes
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in the vascular system that set in motion a disruption of the neu-

rovascular unit in AD. More work is needed to clarify the exact re-

lationship between hypoxia and the vascularly restricted genes

in the pathogenesis of AD.

Neurovascular Disease Pathway

A number of models have been proposed to explain the disease

pathway or pathways in AD. The limited scope of this review pre-

cludes me from comparing and discussing all existing models

and theories of AD and including several important clinical ob-

servations linking cerebrovascular disease and AD, and cerebro-

vascular disease and cognitive decline. Instead, I will briefly

summarize major findings that have been discussed in greater

detail in earlier sections, and focus on the neurovascular cas-

cade in AD.

According to the proposed model (Figure 5B), changes in the

expression of key vascular genes and receptors in brain capillar-

ies and small cerebral arteries may compromise (directly or indi-

rectly) several BBB functions. This in turn leads to reductions in

the resting CBF and attenuated CBF responses to brain activa-

tion, accumulation of Ab, and a neuroinflammatory response, re-

sulting in BBB breakdown. In an early phase, faulty clearance of

Ab at the BBB may favor accumulation of neurotoxic Ab oligo-

mers in the brain ISF. Ab oligomers and focal reductions in the

capillary blood flow can affect synaptic transmission, cause

the neuronal injury, and initiate recruitment of microglia from

the blood or within the brain (Figure 6A). At an early symptomatic

stage, the BBB starts losing properties of an Ab clearing mem-

brane, and the activated endothelium secretes proinflammatory

cytokines and CBF suppressors. This results in more pro-

nounced synaptic dysfunction, accumulation of intraneuronal

tangles, and activation of microglia. At a late symptomatic stage,

the capillary unit is distorted with the degenerated endothelial

barrier. There is a severe loss of Ab clearing capability, resulting
in amyloid formation on the outer side of the capillary membrane,

an increased number of neurofibrillary tangles, and an increased

number of activated microglia and astrocytes. At the final stage,

the capillary unit disappears under the amyloid deposits contem-

poraneous with synaptic and neuronal loss.

Parkinson’s Disease
PD is a chronic, progressive neurodegenerative movement disor-

der. Tremors, rigidity, slow movement (bradykinesia), poor bal-

ance, and difficulty walking (parkinsonian gait) are primary symp-

toms. PD results from the degeneration of dopamine-producing

nerve cells in the brain, specifically in the substantia nigra and

the locus coeruleus, although an initial locus in the dorsal motor

nucleus of the vagus nerve (in the medulla) has also been sug-

gested (Braak et al., 2006). When dopamine production is de-

pleted, the motor system nerves are unable to control movement

and coordination. PD individuals have typically lost over 80% of

their dopamine-producing cells by the time symptoms appear.

BBB Transport

Dopamine restorative therapy with its precursor L-DOPA has

provided symptomatic benefit to PD patients. The effectivenes

of L-DOPA is a perfect example of how the BBB transport

systems can be utilized to deliver neurotherapeutics. Namely,

L-DOPA, but not dopamine, is transported across the BBB in hu-

mans via the L1 facilitative transporter (Hawkins et al., 2006). Af-

ter transport across the BBB, L-DOPA is converted to dopamine,

likely at the surviving dopaminergic terminals and at serotonergic

and adrenergic nerve terminals that contain decarboxylase.

It has been suggested that absorption or metabolism of puta-

tive PD toxins, and their faulty elimination across the BBB, may

play a role in the pathogenesis of PD. Low activity of P-gp efflux

transporter at the BBB in the midbrain of individuals at risk for PD

has been proposed as a mechanism mediating the retention of
Figure 6. Schematic of the Involvement of the Neurovascular Unit in the Pathogenesis of AD
Early phase. Brain hypoperfusion and impaired BBB clearance of Ab lead to accumulation of neurotoxic Ab oligomers in the brain. Reduced blood flow and ac-
cumulated Ab oligomers can both initiate the neuronal injury. Early symptomatic. More pronounced reductions in the blood flow, activation of the endothelium and
pericytes, a loss of BBB Ab clearance properties, an increasing accumulation of Ab in the brain, and activation of microglia and astrocytes create a chronic prob-
lem for normal synaptic transmission and neuronal function. Neurofibrillary tangles may accumulate in neurons in response to both ischemic injury and Ab. Late
symptomatic. Degeneration of the endothelial cell wall and pericytes precludes clearance of Ab and eliminates the blood flow from the capillary unit, resulting in
accumulation of metabolic waste products, changes in the pH, and electrolyte unbalance. These chemical changes in the brain microenvironment present an
insurmountable challenge for synaptic and neuronal function. Amyloid accumulates on the vessel wall. There is also a more prominent accumulation of the intra-
neuronal tangles. End stage. This stage is characterized by a profound neuroinflammatory response and a collapse of the capillary unit, accompanied with a loss
of axonal-dendritic synapses and neurons, which disappear under the amyloid deposits.
Neuron 57, January 24, 2008 ª2008 Elsevier Inc. 191
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putative PD toxins. The involvement of the BBB P-gp transporter

in PD pathogenesis has been demonstrated by verapamil (a

P-gp substrate) retention on PET scans of the midbrain,

but not of other brain regions, in PD individuals (Kortekaas

et al., 2005).

The importance of P-gp in the pathogenesis of PD has been

also suggested by the MDR1 gene polymorphism studies in Chi-

nese populations (Lee et al., 2004). These studies have demon-

strated that some polymorphisms in the MDR1 gene may be pro-

tective and reduce the risk of PD. Other studies have suggested

that mutation in the MDR1 gene may predispose carriers to dam-

aging effects of pesticides, leading to a PD phenotype (Droździk

et al., 2003).

Studies with paraquat, an insecticide frequently used to pro-

duce parkinsonism in rodents, have demonstrated that its trans-

port across the BBB can be blocked by competitive inhibition of

the BBB L1 AA transporter (McCormack and Di Monte, 2003).

This suggests that the L1 AA transporter may be involved in

mediating the entry of parquat in the brain. Interestingly, some

species, like guinea pigs, may exhibit selective regional transport

of dopamine across the BBB in the caudate-putamen, but not in

other brain regions (Martel et al., 1996b). This, however, has not

been found in other species, including humans.

In a hemiparkinsonian rat model, L-DOPA therapy increases

endothelial proliferation and its own transport into the basal gan-

glia, subventricular zone, and hippocampal dentate gyrus (Westin

et al., 2006). It has been suggested that these changes correlate

with the development of dyskinesia, a side effect of L-DOPA.

Circumventing the BBB

Glial-derived neurotrophic factor (GDNF) can regenerate dam-

aged dopaminergic nerve terminals in animal models of PD, but

does not cross the BBB. In a recent clinical trial, GDNF was ad-

ministered directly into the putamen, which enhanced dopami-

nergic function in the immediate vicinity of the catheter tip, but

generated no clinical improvement (Lang et al., 2006). In general,

clinical trials with neurotrophic factors, gene therapy, or peptide

neurotheraputics face a major challenge in how to circumvent the

BBB (Pardridge, 2007).

Microvascular Changes

Early studies have demonstrated that melanin-containing neu-

rons of the zona compacta have a very close spatial relationship

with the blood supply (Issidorides, 1971). The neuronal vascular

contact is so intimate that the capillary appears to have an al-

most intracellular position. In PD individuals, normal contacts

between nigral neurons and capillaries are lost at an early dis-

ease stage, and capillaries do not maintain their normal shape.

Capillary basement membrane thickening and collagen accumu-

lation have also been shown in PD (Farkas et al., 2000).

Neuroinflammation

Neuroinflammation appears to be a ubiquitous finding in PD pa-

tients and experimental models of PD. Phagocyte activation, in-

creased synthesis and release of proinflammatory cytokines,

complement activation, activation of microglia, and release of re-

activeoxygenspecies (ROS) havebeendescribed (Whitton,2007).

CBF Dysregulation

Orthostatic hypotension is one of the many autonomic distur-

bances observed in PD. Normally brain perfusion does not

depend on systemic blood pressure, a mechanism known as
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cerebral autoregulation. Impaired autoregulation of brain perfu-

sion, independent of dopaminergic treatment, has been demon-

strated in PD patients subjected to a drop in blood pressure

compared with controls (Vokatch et al., 2007).

Amyotrophic Lateral Sclerosis
ALS is a chronic neurodegenerative disorder of motor neurons in

the brain, brainstem, and spinal cord that results in a progressive

paralysis that kills individuals within 3 to 5 years of onset (Boillée

et al., 2006a). About 10% of patients have a familial history,

whereas 90% of cases are sporadic. Mutations in superoxide

dismutase-1 (SOD1) are the most common form of inherited

ALS, accounting for almost 25% of familial cases.

Neurovascular Unit

The current model of ALS disease suggests that toxicity derived

from microglia and astrocytes contributes to disease progression

and motor neuron degeneration (Boillée et al., 2006a, 2006b;

Beers et al., 2006; Di Giorgio et al., 2007; Nagai et al., 2007).

Blood Vessels

The role of blood vessels in the pathogenesis of ALS is not clear.

Human data suggest that two angiogenic factors, i.e., VEGF

(Lambrechts et al., 2003) and angiogenin (Greenway et al.,

2006), might have a role in ALS. Mice with a mutation that elim-

inates hypoxia-responsive induction of the Vegf gene (Vegfad/d)

develop late-onset motor neuron degeneration (Oosthuyse

et al., 2001). It has been reported that treatment of SOD1G93A

rats with intracerebroventricular VEGF (Storkebaum et al.,

2005), or of SOD1G93A mice with a VEGF-expressing lentiviral

vector that is transported retrogradely to motor neurons (Azzouz

et al., 2004), reduces pathology and extends survival.

BBB Breakdown

Earlier studies in ALS patients have suggested a possible blood-

CSF barrier and BBB breakdown by demonstrating increased

levels of albumin, IgG, and complement components in the

CSF or in the spinal cord (Engelhardt and Appel, 1990; Meucci

et al., 1993). More recent studies that focused on the axonal dam-

age markers in the CSF (e.g., tau and neurofilaments) reported

a mild increase in the CSF-to-serum albumin ratio in 28% of

ALS patients (Brettschneider et al., 2006). Leakages into the spi-

nal cord of serum plasma proteins (i.e., Ig) and deposition of red-

blood-cell-derived neurotoxic products such as hemoglobin

have been shown in SOD1G93A mutant mice at the onset of the

disease (Z. Zhong and B.V. Zlokovic, unpublished data). Figure 7

illustrates the Zlokovic-Cleveland model for the possible role of

BBB breakdown in the pathogenesis of ALS. Based on this

model, BBB breakdown resulting in a leakage of serum proteins

may generate edema with focal hypoxic conditions in the spinal

cord tissue. In addition, leakage of Igs that interact with motor

neuron antigens can produce ROS (Wentworth et al., 2000) and

initiate an autoimmune response, which in turn can cause demy-

elination, disruption of neuronal transmission, and cell death.

Hemoglobin released from extravasated red blood cells confers

direct toxicity to neurons (Regan and Guo, 1998), which is asso-

ciated with ROS production, lipid peroxidation, and neuronal cell

death.

More studies are needed, however, to clarify when and how

the BBB breakdown contributes to motor neuron injury in exper-

imental models of ALS. For example, it is not clear whether BBB
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breakdown precedes motor neuron degeneration and the in-

flammatory response. The future studies should also elucidate

whether BBB breakdown is a common ramification of all SOD1

mutations with different biochemical characteristics.

Blood Flow

It has been shown that the spinal cord ischemia worsens motor

neuron degeneration and functional outcome in Vegfad/d mice,

while similarly, the absence of hypoxic induction of VEGF in

mice that develop motor neuron disease from expression of

ALS-linked mutant SOD1G93A yields substantially reduced sur-

vival (Lambrechts et al., 2003). Although these studies have sug-

gested that hypoxia may play a role in inducing motor neuron

disorder, the contribution of the spinal cord hypoperfusion to

the development of ALS pathology still remains unclear.

Multiple Sclerosis
MS damages the myelin sheaths that surround and protect nerve

cells in the brain and spinal cord. The symptoms of the disease

may vary and can include visual disturbances, muscle weakness,

trouble with coordination and balance, sensations such as numb-

ness or prickling, and thinking and memory problems. MS begins

between the ages of 20 and 40 and affects women more than

men. Currently, there is no cure for MS, although some therapeu-

tics may slow down the disease progression and help control

symptoms.

The cause of MS is unknown. The current view is that MS is an

autoimmune disease. Early studies have considered the CNS as

an immunologically privileged site. However, today a body of ev-

idence suggests that immune reactions take place in the CNS

with distinctive features that are dictated in part by specific

CNS anatomy; this includes the lack of endogenous antigen-

presenting cells, lack of the lymphatic system, and the presence

Figure 7. Schematic of the BBB Involvement in the Pathogenesis of
Amyotrophic Lateral Sclerosis, or ALS: Zlokovic-Cleveland Model
Focal BBB breakdown with edema and serum protein leakage (e.g., albumin
and Igs) results in focal tissue hypoxia. Red blood cell (RBC) extravasation re-
sults in release of neurotoxic hemoglobin (Hb)-derived products focally in the
spinal cord tissue. Free Hb is directly toxic to motor neurons through genera-
tion of ROS. Focal Ig leakage may promote activation of microglia and astro-
cytes, contributing to nonautonomous cell death. Leakage of Ig that interacts
with motor neuron antigens may exert direct toxic effects on motor neurons.
VEGF promotes angiogenesis and protects neurons from hypoxic injury and
toxicity resulting from Hb and Ig leakage.
of the immunological BBB. As discussed below, the immunolog-

ical BBB controls exchanges of immune cells and their media-

tors between blood and brain.

Leukocyte Entry into the CNS

Few leukocytes are normally present in the CNS. Most work on

the trafficking of leukocytes in the CNS came from studies using

disease or injury models. These studies revealed at least three

distinctive routes for leukocyte entry into the CNS: (1) from blood

to CSF across the choroid plexus; (2) from blood to subarachnoid

space; and (3) from blood to parenchymal perivascular space

(Ransohoff et al., 2003; Engelhardt and Ransohoff, 2005; Man

et al., 2007). The blood-CSF route has physiological significance

since the CSF of healthy individuals contains �3,000 leukocytes

per ml. In the CSF, T cells represent �80% of leukocytes. In the

second route, leukocytes extravasate across postcapillary ve-

nules at the pial surface of the brain into the subarachnoid space,

and from there enter the Virchow-Robin perivascular spaces. The

perivascular spaces are considered probable sites of lympho-

cytic interaction with antigen-presenting cells, and are important

for immune surveillance. The activated T cell blasts can also

extravasate across the postcapillary venules into the brain paren-

chyma (third route).

BBB Transport

The BBB mechanisms critically regulate immune responses of

the CNS in conditions such as MS and experimental models of

MS, such as EAE. During the course of EAE, autoaggressive

CD4+ T lymphocytes are activated outside the CNS. They accu-

mulate in the brain and CSF by crossing the BBB and the blood-

CSF barrier (Ransohoff et al., 2003; Engelhardt and Ransohoff,

2005; Man et al., 2007). It has been proposed that CSF central-

memory CD4+ T lymphocytes carry out routine immunosurveil-

lance of the CNS by searching within the CSF-filled subarachnoid

spaces for recall antigens presented by either subarachnoid

space macrophages or pericytes.

In the EAE models, transport of different subsets of cytotoxic T

lymphocytes from blood to brain is critical for lymphocytic infil-

tration of the CNS, which in turn results in neuronal killing. It is be-

lieved that Th17 lymphocytes, which secrete interleukin-17, may

play an important role in neuronal killing (Stockinger and Veld-

hoen, 2007). But whether Th17 lymphocytes are activated from

pre-Th17 subsets of T cells in peripheral organs and transported

across the BBB, or whether Th1, Th0, or other pre-Th17 lympho-

cytes initially penetrate the BBB followed by maturation into

Th17 cells in the CNS locally, is still a matter of debate. Recent

studies suggested that Th17 cells can penetrate the BBB (Kebir

et al., 2007). The BBB mechanisms that mediate transport of

different subsets of T cells into the CNS represent potentially

important therapeutic targets.

Figure 8 shows factors determining the transport of leukocytes

across the cerebral endothelium in inflamed postcapillary ve-

nules on the pial surface. Leukocyte extravasation takes place

in different steps that include rolling, activation, adhesion, and

transmigration (Engelhardt and Ransohoff, 2005; Man et al.,

2007). In a simplified scenario, the interaction of selectins and

their ligands during the tethering/rolling phase, chemokines

and G-protein coupled receptors during the activation phase, in-

tegrins and endothelial cell adhesion molecules (CAMs) during

the adhesion phase, and chemokines, chemokine receptors,
Neuron 57, January 24, 2008 ª2008 Elsevier Inc. 193
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and MMPs during the transmigration phase (Figure 8) direct the

entry of recently activated or chronic memory leukocytes into dif-

ferent CNS sites. The later stages of extravasation require inter-

actions between G protein-coupled receptor on leukocytes (e.g.,

chemokine receptors) and an appropriate ligand (e.g., chemo-

kines). Chemokines mediate the activation of integrins on leuko-

cytes to achieve adhesion, i.e., a state of high-affinity binding

with CAMs on the endothelium. A second set of signals through

chemokines on the luminal and abluminal side of the BBB and G

protein-coupled receptors on endothelium leads to cytoskeletal

reorganization, which permits transmigration of leukocytes

across the BBB. A number of TJ molecules participate, including

JAM-A and ESAM. Leukocytes can extravasate by paracellular

or transcellular route across the BBB.

New therapies based on blocking transport of central memory

T cells, effector memory T cells, and activated monocytes with

Natalizumab (therapeutic neutralizing monoclonal antibody to

a4 integrin) across the BBB have been reported (Ransohoff,

Figure 8. Schematic of the BBB Involvement in the Pathogenesis of
Multiple Sclerosis, or MS
Leukocyte extravasation across the activated endothelium of the pericapillary
venules on the pial surface of the brain involves four stages: tethering and roll-
ing, activation, adhesion, and transmigration (or diapedesis). Leukocytes
tether to endothelial cells through binding of selectins to their carbohydrate
ligands. A simplified schematic on the bottom illustrates selectins only on
endothelium, although selectins can also be expressed by leukocytes. Rolling
requires interaction between chemokines expressed at the luminal membrane
of the BBB with G protein-coupled chemokine receptors on leukocytes. Inter-
action between chemokine receptors on leukocytes with endothelial luminal
chemokines initiates signals that lead to clustering and conformational
changes of the cell surface integrins on leukocytes. Adhesion requires trans-
formation of integrins on leukocytes into a form that can bind to their ligands,
typically CAMs on the luminal side of the BBB, with high affinity. This high-af-
finity/high-avidity reaction between integrins and adhesion molecules medi-
ates leukocyte arrest and adhesion. Transmigration happens after the arrest
phase by paracellular transport across the endothelial junctions, transcellularly
across the endothelial cells, or both. Leukocytes locomote on the endothelial
surface until they identify the interendothelial junctions. Next, they extend their
protrusions through the interendothelial junction and search for chemokines
expressed on the abluminal side of the BBB. Chemokine-chemokine receptor
interactions guide the extravasation of leukocytes. These interactions mediate
the cytoskeletal changes in leukocytes, resulting in a change of their shape to
allow transmigration. Transmigration follows chemotactic gradients. Extrava-
sating cells cluster in the perivascular space, between the endothelial base-
ment membrane and the basement membrane of the glia limitans, awaiting
transfer into the brain extracellular space. This requires an additional transport
step across the glia limitans mediated by matrix metalloproteinases (MMPs).
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2007). T cells express a4b1 integrins on the cell surface, and their

transport across the BBB into the CSF and into the MS lesions

was blocked by Natalizumab. Natalizumab binds and inactivates

the integrin molecule on leukocytes. Its therapeutic effects

include dramatic reductions of the BBB breakdown in recipients

with active MS and lowering the counts of CSF leukocytes

by over 60%, compared with subjects with no inflammatory

diseases.

AIDS Dementia
The AIDS Dementia Complex (ADC) is the most common and

clinically important CNS complication of late HIV-1 infection. It

is a source of great morbidity and, when severe, is associated

with limited survival. While its pathogenesis remains unclear,

ADC is generally believed to be caused by HIV-1 itself, rather

than by another opportunistic infection.

BBB-regulated cellular trafficking is critical for the develop-

ment of CNS pathology caused by HIV-1, as well as other neuro-

inflammatory conditions including meningitis and encephalitis.

HIV-1 infiltrates the CNS largely via infected monocytes and

macrophages. According to the current concept, HIV-1 infiltra-

tion is mediated by its envelope glycoprotein, gp120, which ac-

tivates protein kinase C isoforms in BEC to alter the BBB perme-

ability and allow monocyte migration (Kanmogne et al., 2007).

The involvement of MMPs during HIV-1 infiltration, as well as in

other disorders of the CNS such as MS and cerebral ischemia,

as discussed above, and migraine and brain tumors, is well

established. Transport of peripheral monocytes carrying the

HIV-1 virus across the BBB into the CNS precedes development

of AIDS dementia. Better understanding of the BBB molecular

mechanisms is not only important for understanding the patho-

genesis of the disease, but will likely lead to the discovery of

new therapeutic targets and agents to control ADC.

Future Challenges
As discussed in earlier sections, a growing body of evidence

suggests that neurovascular mechanisms and disruption of the

BBB may precede, accelerate, or contribute to chronic disease

processes in neurodegenerative disorders of the adult and aging

nervous system. The examples include, but are not limited to (1)

faulty BBB clearance of potential brain toxins in AD and PD; (2)

inefficient clearance of excitotoxins across the BBB after an is-

chemic insult or traumatic brain injury; (3) increased transport

of leukocytes across the activated BBB in MS, AIDS dementia,

and AD, and during neuroinflammatory CNS responses, and (4)

BBB breakdown in ALS, AD, epilepsy and MS.

Numerous challenges remain. At the BBB level, a number of

carrier-mediated transporters, such as those for neuropeptides,

choline, thyroid hormones, vitamins, and nucleobases, remain to

be cloned. Many active efflux transporters and receptor-medi-

ated transporters have not been cloned. The transport mecha-

nisms that regulate levels of different proteinacious aggregates

inside the brain, such Ab, need to be refined in greater detail,

and for others, e.g., a-synucleins, huntingtin, SOD1, they remain

to be discovered. The role of the TJ proteins in the pathogenesis

of neurodegenerative disorders remains to be explored as well.

Developing new genomic and proteomic discovery platforms

will enable us to identify new BBB transporters and junctional
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barrier proteins. Exploring polymorphisms in these transporters

and the junctional interendothelial proteins to look for genetic

susceptibility to neurodegenerative disorders is an important

priority. If BBB transporters, receptors, and interendothelial pro-

teins contribute to susceptibility or progression of neurodegener-

ation, then manipulation of such transport systems and barrier

function may offer neuroprotective and treatment strategies.

New BBB transporters and junctional proteins could also be

potentially utilized as portals of entry for cerebral drug targeting

systems.

The transport mechanisms of the BBB have not been fully

characterized in humans. Better knowledge of human BBB

transport systems is essential for translating findings from animal

disease models to humans. Progress in neuroimaging should

allow us to measure in vivo barrier activity and function of key hu-

man BBB transporters. Construction of a human BBB molecular

atlas could be a major advancement toward understanding the

role of the BBB in health, disease, and drug delivery to the brain.

Challenges for the future include understanding the crosstalk

between nonneuronal cell types (e.g., glia and microglia), cells

of the vessel wall (e.g., endothelium and pericytes), and neurons

(with each other), and possibly between neurons and peripheral

hematopoetic cells and vascular niches and neurogenic loci in

the brain. Identifying how these cells respond to, process, or

synthesize different receptors, and identifying the ligands that

mediate their interactions, is critical to understanding how these

same cells regulate the neuronal milieu.

Experiments that selectively examine leukocyte trafficking into

meningeal, parenchymal, and ventricular sites should further

clarify immunological specialization of the CNS. Investigation

of the molecular mechanisms of transmigration of different leu-

kocyte subpopulations across the BBB is critical for developing

specific strategies to control the neuroinflammatory response.

An overall goal of future research in drug targeting is to expand

the CNS drug space from lipid-soluble small molecules to the

much larger space of neurotherapeutics that includes molecules

that do not normally cross the BBB. For example, future studies

should continue to explore the translational potential of ap-

proaches that are currently in different stages of preclinical

development, including (1) the molecular Trojan horses that

use either monoclonal antibodies against the BBB receptors

(e.g., insulin and transferrin) to ferry across the BBB an attached

drug, protein, antisense agent, or nonviral plasmid DNA, or pegy-

lated immunoliposomes to deliver short hairpin RNA to control

neurotransmitter levels or growth factor activities; (2) delivery

of pharmaceuticals encapsulated into nanoparticles conjugated

to ligands for BBB receptors (such as LDL apoproteins) to carry

drugs across the BBB via the BBB LDL receptor; and (3) delivery

via the BBB receptors that are particularly expressed in the dis-

ease state, as for example RAGE in AD, diabetic vasculopathy,

or stroke.

With the present exciting developments and new future direc-

tions, continued BBB research will change the face of neurome-

dicine in the decades to come, with hundreds of millions of

people worldwide predicted to benefit from our better under-

standing of the role of the BBB in neurodegenerative disorders

and its potential role in new diagnostic and therapeutic

approaches.
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