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The rise in the prevalence of autoimmune diseases in developed societies has

been associated with a change in lifestyle patterns. Among other factors, increased

consumption of certain dietary components, such as table salt and fatty acids and

excessive caloric intake has been associated with defective immunological tolerance.

Dietary nutrients have shown to modulate the immune response by a direct effect on the

function of immune cells or, indirectly, by acting on the microbiome of the gastrointestinal

tract. FOXP3+ regulatory T cells (Tregs) suppress immune responses and are critical for

maintaining peripheral tolerance and immune homeostasis, modulating chronic tissue

inflammation and autoimmune disease. It is now well-recognized that Tregs show certain

degree of plasticity and can gain effector functions to adapt their regulatory function to

different physiological situations during an immune response. However, plasticity of Tregs

might also result in conversion into effector T cells that may contribute to autoimmune

pathogenesis. Yet, which environmental cues regulate Treg plasticity and function is

currently poorly understood, but it is of significant importance for therapeutic purposes.

Here we review the current understanding on the effect of certain dietary nutrients that

characterize Western diets in Treg metabolism, stability, and function. Moreover, we will

discuss the role of Tregs linking diet and autoimmunity and the potential of dietary-based

interventions to modulate Treg function in disease.
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INTRODUCTION

An appropriate balance between pro- and anti-inflammatory immune responses is required
to protect organisms from invading pathogens and tumor development without incurring
in autoimmune and allergic diseases. While different cell populations with anti-inflammatory
activity have been identified, CD4+FOXP3+ regulatory T cells (Tregs) are the most well-defined.
FOXP3 transcription factor determines Treg cell lineage and is essential for appropriate immune
homeostasis. Loss-of-functionmutations in foxp3 lead to fatal immune disorders in humans (IPEX)
(1, 2) and mice (Scurfy phenotype) (3).

Tregs suppress innate and adaptive immune responses using a broad array of molecular
mechanisms which e.g., involve cell-contact dependent mechanisms (4), the release of soluble
factors (5, 6), deprivation of growth factors (7), induction of apoptosis of target cells (8), and ATP
hydrolysis and adenosine production (9, 10). Although there is versatility in the Treg response
that allows for a specialized response according to the environment, the anatomical location, and
the type of the cell to suppress (11, 12), increasing evidence suggests lack of Treg stability as a
culprit of autoimmunity (13). Tregs isolated for instance from T1D (14, 15), MS (16–19) and SLE
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(20) patients showed acquisition of pro-inflammatory functions
and reduced suppressive potency in vitro.

Whereas, genetic factors clearly predispose to autoimmune
development, the dramatic increase in the incidence of
autoimmune diseases in Western countries suggests Western
lifestyle patterns as important triggers of disease [reviewed in
(21, 22)]. A variety of factors have been proposed to favor
autoimmune development such as decrease pathogen exposure,
smoke, hormones, stress, pollutants, dietary components and
obesity (23–27). Moreover, increasing data highlight the complex
interplay between nutrition, metabolic state and the immune
response. Caloric restriction ameliorates disease severity and
increases the lifespan in experimental animal models of
inflammation and autoimmunity (28–30). By contrast, obesity
is one of the most consisting factors that predispose for
autoimmunity, having being linked with MS (31), T1D (32),
psoriasis (33), and Chron’s disease (34) (Figure 1). In addition,
diet alters the gut microbial composition. Gut bacteria and their
metabolites regulate pro-inflammatory and regulatory T cell
responses in the gut, which could exert systemic effects in the
individual (35–37).

Although there are many other cell types and environmental
factors involved in triggering autoimmunity, given their
crucial role in disease regulation, we will summarize the
evidence provided by experimental and epidemiological
studies associating nutrition, regulatory T cell function
and autoimmunity.

Treg REGULATION AND
HETEROGENEITY

We and others have shown before that different cell subsets can
be distinguished within the pool of Tregs (9, 38). Recent immune
phenotyping by mass cytometry and single cell transcriptomic
analysis have further demonstrated the heterogeneity of the
FOXP3+ Treg population (39, 40). Therefore, these technologies
could potentially aid in the identification of novel markers
involved in Treg function, stability and migration and in gaining
a better understanding of Treg biology. Tregs are typically
categorized according to their origin into two subsets; those
that develop in the thymus (tTregs) as a distinct cell lineage,
and those induced from CD4+CD25−FOXP3− naive T cells in
peripheral tissues (pTregs). In vitro, FOXP3+ Tregs can also be
generated from CD4+FOXP3− T cells by e.g., culturing them
in the presence of TGF-β, IL-2, and anti-CD3 stimulation (41,
42) being generally named as iTregs, although their functional
activity is not well-defined in humans.

FOXP3 is regulated at transcriptional and post-transcriptional
level in response to environmental cues [reviewed in (43)].
Demethylation at specific regions of the foxp3 locus is pivotal
for regulating FOXP3 expression in different Treg subsets
(44). Moreover, distinct FOXP3 splicing variants have been
described in humans (45–49) and variations in their relative
expression are present in autoimmune disease patients (50–54),
suggesting a link between FOXP3 post-transcriptional regulation
and autoimmune pathogenicity.

Signals driven by the cytokine milieu (55–59), co-stimulatory
molecules (60–62) and the strength of the TCR signaling (63–
65) allow Tregs to adapt to the immune environment through
e.g., changes in FOXP3 expression. Several studies have shown
that, under certain inflammatory conditions, some Tregs secrete
pro-inflammatory cytokines and lose their suppressive function
(13, 66–72). Interestingly, phenotypically distinct Treg subsets in
humans and mice have been described that mirror CD4+ Th cell
populations by specific co-expression of chemokine receptors,
cytokines, and lineage specifying-transcription factors classically
associated with Th cells (18, 73–76). The acquisition of Th-
specific markers may allow Tregs to co-localize and regulate
particular Th cell subsets in vivo (76). However, it might also
be an indication of loss of function. Indeed, an increase in
IFN-γ-producing Tregs has been associated with e.g., T1D, MS
and autoimmune hepatitis (15, 18, 77). Also, the frequency of
Tregs expressing IL-17 is increased in e.g., human patients with
psoriasis, IBD and RA (62, 78–83). These data suggest that
some Th-like Tregs may lose their ability to suppress immune
responses and, instead, may contribute to autoimmunity.

Additionally, Tregs show phenotypical differences depending
on which tissue they reside in, with the best non-lymphoid-
tissue Treg populations described being those residing in visceral
adipose tissue (VAT), skeletal muscle, colonic lamina propria and
skin [reviewed in (84–86)]. In general, tissue-resident Tregs are
characterized by higher frequency, self-antigen TCR repertoire
with clonal micro-expansion, and a specific transcriptional
profile different from Tregs in lymphoid organs (87–90).
Moreover, by the use of single cell transcriptomics it was revealed
that Tregs are highly homogenous within each tissue (40). These
distinct phenotypes allow for cell accumulation in specific tissues
and dedicated function within the microenvironment [reviewed
in (84)].

The existence of multiple Treg subsets with specialized
function dependent on environmental signals shows the
complexity of Treg biology, but it also makes Treg plasticity and
function susceptible to pharmaceutical intervention. Whether
changes in diet or microbial composition associated with
a Western lifestyle can control Treg function is being
actively studied.

OBESITY AND VAT Tregs

Excessive calories are stored as fat in adipose tissue, which
also acts as an “endocrine organ” releasing pro-inflammatory
adipokines and cytokines such as TNF-α, IL-6, IL-1β, and
leptin, resulting in systemic low-degree chronic inflammation
(91, 92) (Figure 1). Multiple immune cell types reside in the
adipose tissue and play a role in inflammation and metabolic
dysregulation (87, 93–99). In particular, obese mice display a
dramatic reduction in Treg numbers specifically in adipose
tissue, but not in other fat depots, nor in other non-lymphoid
tissues and spleen or lymph nodes (87, 100). Cytokines and
adipokines may be involved in controlling Treg fluctuations
in obese VAT. Obesity positively correlates with IL-6 and IL-
17 expression in mice and humans (101, 102). IL-6 promotes
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FIGURE 1 | Western diet affects gut microbial composition and induces low-degree chronic inflammation that alters the metabolic status of the individual. Healthy diet

supports the growth of bacterial species that, by the production of immunomodulatory metabolites, promotes Treg induction over Th17 cell development in the

intestine. By contrast, western diet, characterized by high caloric intake, and high levels of salt and cholesterol, leads to obesity, increased secretion of

pro-inflammatory adipokines and cytokines, and altered gut microbial composition. These changes are associated with an altered Treg phenotype and higher Th17

cell differentiation in the VAT and intestine. Importantly, Treg and Teff cells developed in the gut and VAT have a systemic effect and may contribute to exacerbation of

autoimmune pathogenicity. Moreover, the frequency and function of Tregs may also be regulated by metabolic pathways such as FAO, OXPHOS, and glycolysis that

depend on the nutritional state of the individual. VAT, visceral adipose tissue; Teff, effector T cell; FAO, fatty acid oxidation; OXPHOS, oxidative phosphorylation; MS,

multiple sclerosis; SLE, systemic lupus erythematosus; IBD, inflammatory bowel disease; RA, rheumatoid arthritis.

Th17 over Treg development (103) and obese-induced Th17 cell
expansion was correlated with exacerbated disease symptoms
in autoimmune disease models of experimental autoimmune
encephalomyelitis (EAE) and colitis (102, 104). Leptin favors

Th1 responses (105–109) and Th17 differentiation (110), but
inhibits Treg proliferation (111). Moreover, leptin deficient mice
showed a decrease in pathogenic inflammation in most of
experimental models of IBD (112), RA (113, 114) and MS (108,
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109). Similarly, relapsing-remitting MS patients also displayed
an inverse correlation between frequency of Tregs and serum
leptin levels (115), indicating that leptinmay act as a link between
obesity, Treg numbers and immunological tolerance.

In addition to differences in frequency, it was demonstrated
that VAT-Tregs isolated from genetically promoted (leptin-
deficient) or diet-induced (high fat chow) insulin-resistantmouse
models of obesity have an altered transcriptional signature
compared to lean mice (116). Phenotypical changes driven by
obesity highlight the adaptability of VAT-Tregs to metabolic
perturbations and suggest that obesity might alter Treg plasticity.
Although most of the molecular mechanisms still need to be
elucidated, it has been shown that excessive caloric intake leads to
a dysregulation of intracellular nutrient-energy-sensing pathways
and metabolic overload in immune cells (117, 118).

METABOLIC REGULATION OF Tregs

Cellular metabolism regulates cell development, proliferation
and function and is controlled by environmental cues and
nutrient availability (119, 120). Tregs have a specific metabolic
profile, which is mainly dependent on mitochondrial metabolism
through fatty acid oxidation (FAO) or pyruvate dependent
oxidative phosphorylation (OXPHOS) (121–125). mTOR, one
of the main pathways linking nutritional availability with
cellular activity, promotes glycolysis (126, 127) and regulates
differentiation of Th1, Th17, and Tregs (128–130). Studies
showed that in vitro over-activation of mTOR, by culturing
in media containing high concentration of nutrients or leptin,
impaired Treg proliferation and the induction of FOXP3
expression (131). Treatment with rapamycin or neutralizing anti-
leptin mAb reversed this effect and resulted in increased Treg
frequencies and lessened EAE severity. However, continuous
treatment with rapamycin or genetic mTOR silencing impeded
Treg proliferation in the long term in vivo (131). Hence, periods
of high and low nutrient levels, required for oscillatory changes
in mTOR activity, may be necessary for Treg homeostasis and
immunotolerance [reviewed in (132)].

Deletion of PTEN, a negative regulator of PI3K, also
contributes to Treg regulation by enhancing glycolysis,
decreasing FOXP3 expression and inducing the generation of
effector T cells (133, 134). Additionally, the metabolic sensor
LKB1 acts through AMPK promoting OXPHOS over glycolysis,
and its deletion on Tregs led to alterations in cellular metabolism
and the development of autoimmune diseases associated with
dampened FOXP3 expression (124, 135). On the other hand,
AMPK is considered an antagonist of mTOR activity with the
ability to promote FAO (136, 137). Berod et al. showed that
deletion of ACC1, a key enzyme in fatty acid synthesis, promoted
AMPK activity in CD4+ T cells leading to increases in FAO and
Treg development, and ACC1 inhibition under EAE conditions
improved disease severity by increasing Treg/Th17 ratio (138).

Vitamins and indoles also modulate Treg function (59). For
example, retinoic acid (vitamin Ametabolite) acts in conjunction
with TGF-β promoting the induction of Tregs from naive T
cells and stabilizing FOXP3 expression, which prevented their

conversion into Th1/Th17 cells in the presence of IL-1β/IL-
6 (139, 140). Calcitriol, a vitamin D metabolite, enhanced
the growth of Tregs (141, 142). Vitamin C has been found
to increase the generation of FOXP3+ iTregs on alloantigen-
specific Treg induction cultures and to cause a pronounced
TSDR demethylation, resulting in an elevated FOXP3 stability
(143). Interestingly, vitamin C treatment may act in a distinct
manner on tTreg and iTreg function. A recent study by Oyarce
et al. showed that tTreg cells pretreated with vitamin C before
coculturing with effector CD4+ T cells did not enhanced
Treg ability to suppress T cell proliferation regardless of their
increased FOXP3 expression. By contrast, in vitro-induced iTregs
generated in presence of vitamin C showed improved suppressive
capacities (144).

Metabolites associated with aryl hydrogen receptor (AHR)
also control Treg function. Kynurenine is important for
the generation, expansion and function of Tregs (145–147)
and indole-3-carbanole (I3C) and 3,3′-diindolylmethane (DIM)
promoted Treg infiltration to the CNS under EAE conditions,
improving disease severity, and progression (147).

These data highlight the potential of targeting Treg
metabolism to ameliorate autoimmune disease progression.
However, more research regarding the therapeutic level of such
modulation still has to be conducted. Besides, the limitations
associated with studying Treg metabolism, due to their plasticity,
culturing method, and biological source prompt a big challenge
in the field.

THE EFFECT OF SALT IN Treg PLASTICITY

Increased intake of salt that is also common in Western diets
has been linked with cardiovascular disease (148, 149) and
autoimmunity (22, 150–154). Although the specific mechanisms
are still being revealed, several studies in murine EAE and
colitis models have demonstrated that elevated NaCl intake could
exacerbate disease by promoting the induction of pathogenic
Th17 cells via the SGK1-FOXO1 pathway (35, 36, 155). Besides,
Wu et al. have recently described a direct effect of SGK1-FOXO1
in controlling Treg function, such as SGK1 deficiency in Tregs
protected mice from the development of autoimmunity (156).

High-salt also induced secretion of IFN-È and repressed IL-
10 expression in Tregs, which resulted in impaired suppressive
function in vitro and in vivo (155, 157, 158). In mice fed with
high-salt diet, Tregs secreted more IFN-γ and failed to control
colitis and xenogeneic GvHD, which was dependent on SGK1
signaling (157). IFN-γ-secreting FOXP3+ Tregs with reduced
IL-10 expression have been found in MS and T1D patients and
are thought to contribute to disease (15, 18, 158). Interestingly,
the imbalance between IFN-γ- and IL-10-expressing-Tregs in
MS patients was also observed when Tregs from healthy donors
were exposed to high-salt in vitro (158), suggesting that a
high-salt environment could skew Tregs toward a dysfunctional
state. Moreover, PTGER2 and β-catenin appeared as upstream
regulators of the SGK1-FOXO1 axis in response to high-salt
concentration, and constitutive expression of active β-catenin
in Tregs caused the development of Scurfy-like autoimmunity
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(158). Interestingly, stabilized active β-catenin has been also
found in MS patients (158), suggesting that similar regulation
may exist in humans. Recently, Luo et al. have proposed that,
while high-salt alters the function of tTregs, it has no effect
on pTregs or iTreg, which maintained unaltered transcriptional
signature and stable FOXP3 expression, cytokine profile and
suppressive function under high salt conditions (159). However,
Wu et al. reported higher FOXP3 expression and regulatory
function in iTregs and pTregs that lack SGK1 function (156),
indicating that iTregs and pTregs could also be affected by high-
salt via SGK1-FOXO1 axis. More studies are therefore required
to clarify the role of high salt in Treg subpopulations.

Based on these findings, multiple studies have attempted to
study the relation between salt intake and autoimmune disease
in humans. In MS patients, Farez et al. have reported a positive
correlation between disease activity and increased dietary sodium
intake (150). Moreover, higher sodium concentration was
observed in acute MS lesions than in chronic lesions (160).
However, studies in larger cohorts have shown no significant
correlation between salt consumption and the risk of MS
development (161) or disease severity (162). Limitations in
accurate measurement of NaCl levels and in the identification
of the specific effect of salt independently of other dietary
components may account for these controversial results [as
discussed in (163)]. Since moderate increases in salt intake has
proven to affect human immune cells, including T cells in vivo
(26, 37), more specific analysis are needed to establish the role of
NaCl in human autoimmune disease.

THE GUT MICROBIOTA AFFECTS
DISEASE-CONTROLLING Tregs

The human gastrointestinal tract is the major reservoir of
microorganisms including bacteria, microeukaryotes, archaea,
and viruses, all of which collectively constitute the commensal
microbiota (164). Extensive research has demonstrated the
intimate crosstalk between commensal microbiota and
immune balance. Tregs residing in the intestine are critical
for maintaining intestinal immune homeostasis (165–167).
Increasing evidence shows that Tregs in the colonic lamina
propria are mostly peripherally-induced and depend on
microbiota-derived signals for proper development and function
(90, 168, 169). In fact, germ-free mice or antibiotic-treated
mice show a substantial reduction in colonic Treg frequency
(168, 170, 171). Interestingly, induction of pTregs in the small
intestine appears more dependent on dietary antigens than on
microbial signals (172). By investigating germ-free mice fed on
an antigen-free diet, Kim et al. elegantly showed reduction in
pTreg numbers in small intestinal lamina propria compared to
germ-free mice fed on conventional diet. Importantly, pTregs
residing in small intestinal lamina propria suppressed immune
responses against dietary antigens (172).

Haghikia et al. elegantly demonstrated that dietary fatty
acids profoundly impact T cell subset differentiation in the
gut, which had a subsequent impact on central nervous system
autoimmunity. The authors showed that SCFAs increased Treg

proliferation while long-chain fatty acids (LCFAs) supported Th1
and Th17 differentiation in the gut, which had a significant
effect in EAE severity (173). The short-chain fatty acid (SCFA)
butyrate, derived from fermentation of dietary carbohydrates
by gut microbiota, is an important promotor of colonic Treg
differentiation through epigenetic modifications in the foxp3
locus, which induces FOXP3 expression and pTreg conversion
(171, 174–176). Clostridia are known to produce high levels
of butyrate and colonization of germ-free mice with these
bacteria increased colonic Treg frequency and protected mice
from colitis (177). By contrast, segmented filamentous bacteria
(SFB) induced Th17 cell development in the gut promoting
systemic autoimmunity (178–180). In a recent study, Luu
et al. have shown that the SCFA pentanoate inhibited SFB-
promoted Th17 cell induction by metabolic and epigenetically
reprogramming CD4+ T cells to suppress IL-17 production and
fostering IL-10 production in CD4+ T cells and B cells (181).
Furthermore, Häger et al. reported increased Treg numbers in
36 RA patients after receiving high-fiber dietary supplementation
for 28 days, which correlated with a higher Th1/Th17 ratio
and decreased expression of markers associated with bone
erosion (182).

Several studies have shown that administration of probiotic
bacteria containing members of the Lactobacillus, Streptococcus,
and Bifidobacterium genera primed DCs to induce the
development of FOXP3+ Tregs and IL-10-secreting regulatory
T cells (183, 184) (Figure 1). Poutahidis et al. showed that
mice fed with Westernized “fast food”-style chow developed
obesity and had increased IL-17 levels. By contrast, the
addition of probiotic yogurt containing Lactobacillus reuteri
into the diet was sufficient to induce weight loss by a Treg
dependent mechanism (174). Importantly, diet alters the
gut microbiome (185–187) and dysregulation of intestinal
microbiota is associated with autoimmunity [reviewed in
(188, 189)]. Wilck et al. have shown that increased salt
consumption affects intestinal bacterial composition in mice
and humans. Lactobacillus spp. was suppressed in high salt
condition, but its supplementation prevented high salt-induced
Th17 differentiation and ameliorated salt-sensitive hypertension
and EAE severity (37, 154). Cekanaviciute et al. found that MS
patients have a high presence of the Akkermansia calcoaceticus
and Akkermansia muciniphila, and the exposure of healthy
donor PBMC to these bacteria impaired Treg conversion while
enhancing Th1 differentiation (190). These data connect diet
with microbiota composition and autoimmune pathogenesis,
raising the potential of microbiota-targeted therapies.

DIET AS A THERAPEUTIC AID TO
CONTROL AUTOIMMUNITY

It is becoming clear that nutrition, metabolic state, microbiota,
and autoimmunity are deeply interconnected. In addition to
genetic factors, the Western diet characterized by high caloric
intake in the form of processed food enriched in protein, sugar,
fat and salt, is widely believed to contribute to the rise in
autoimmune diseases in the last decades (Figure 1). However,
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one of the major challenges in investigating the effect of diet
in human health is the impossibility to address the role of
individual nutrients, which maybe the reason why a definite
association between dietary interventions and outcomes in
human autoimmune disease has not been established yet. Besides,
dietary nutrients and microbial metabolites alter the immune
response by acting on different immune cell populations,
challenging our aim to identify underlying immunological
mechanisms targeted during dietary interventions. For instance,
we have recently corroborated that high salt diet lead to
alterations in T cell populations in murine tumor transplantation
models (191). However, inhibition of tumor growth given by
high salt diet was largely independent of T cells in these models.
Instead, high salt blocked the suppressive function of myeloid
derived suppressor cells (MDSCs) in vitro and seems to promote
thereby more pronounced anti-tumor immunity in vivo (191).

Obesity alters the balance between pro-inflammatory and
suppressive T cells responses in adipose tissue, with Tregs losing
their phenotypic identity and function (116), and resulting in
break of self-tolerance (131) (Figure 1). Caloric restriction exerts
immunoregulatory effects but is not suitable as general therapy
for humans. Interestingly, Cignarella et al. have recently reported
that intermittent fasting also improves disease outcomes in
the EAE model as caloric restriction does (192). This effect
was partially mediated by changes in the gut microbiota, since
microbiota transplantation from mice under intermittent fasting
into normally-fed mice could induce protection from EAE
(192). Microbiota is a major determinant in the regulation of
pro-inflammatory and regulatory T cell plasticity in the gut
(35–37). Importantly, gut-resident T cells have the ability to
traffic between different organs and exert a systemic effect
in the organism (193, 194). Furthermore, these findings were
translated into a small trial studying 16MS patients that were
on intermittent fasting for 15 days. Although no significant
changes in gut bacteria composition was observed, a trend toward
increased abundance of the Treg-inducer Clostridia bacteria was
reported (177, 192).

As indicated by these data, dietary interventions and the use
of probiotics may aid in the control of Treg stability and function

by altering the milieu in which Tregs act in vivo, and help
to restore immune responses in individuals with autoimmune
prone Western lifestyle.

CONCLUDING REMARKS

Although it is clear that Treg function is frequently altered
in human autoimmunity, it should be noted that Tregs
are a heterogenous population with distinct tissue-specific
features, multiple functions and differential degree of
plasticity in response to environmental cues. Moreover,
autoimmune diseases are highly heterogenous and it is
likely that different defects in Treg-mediated regulation
are involved in different types of autoimmune disease and
even in each individual depending on the specific genetic
background (195). Increasing progress in purifying and
subdividing Treg subsets and defining the mechanisms
that dictate their function and plasticity will likely
contribute to a better understanding on the role of Tregs
in autoimmunity.

Dietary factors, via direct effects on immune cells or by
acting indirectly through modulation of the gut microbiota, may
regulate Treg plasticity and function and, therefore, may have
the potential to control disease outcome. However, more research
and tightly controlled studies are needed to assess the impact of
specific dietary nutrients and bacteria or microbial metabolites
on Tregs, autoimmunity, and human health.
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