Bioactive Direct Restorative Materials

Todd Snyder, DDS, FAACD, FIADFE, ASDA

Accredited Fellow, American Academy of Cosmetic Dentistry
Fellow, International Academy for Dental Facial Esthetics
Member of The American Society For Dental Aesthetics
Former Faculty, UCLA Center For Esthetic Dentistry
What are Bioactive Restorative Materials?

Fluoride release and the conversion of hydroxyapatite to its stronger form, fluorapatite.

Original Concept of Bioactivity
What are Bioactive Restorative Materials?

Bioactive dental materials release compounds that help regenerate or maintain dental structures. In the past, fluoride release was the only mineral that was in bioactive materials. Today we have materials that also release calcium and phosphate ions. Dentists use bioactive materials to remineralize dentin, repair bony defect, and maintain dental prosthetic margins. Bioactivity also includes the precipitation of apatite crystals on the surface of the material in the presence of moisture (saliva).

What types are currently available?
What types are currently available?

- Bases & Liners
- Cements
- Restorative Filling Materials

Why do dentists use bioactive materials?
Remineralization of dentin, repair of bony defects, and maintenance of dental prosthetic margins.

Material Composition
Classifications

- Primarily we have calcium silicates and calcium aluminates but the bioactive dental materials often contain some mixture of both. This only refers to the calcium releasing bioactive materials not the fluoride only materials.
- Calcium silicate materials similar to MTA (Portland cement)
- Calcium silicate with phosphate and without aluminum
- The calcium silicates with mostly tricalcium silicate
- Calcium aluminate
- Calcium aluminate and glass ionomer

Bioactive Liners

- Activa
- Biodentine
- CaOH Dycal
- TherCal LC
- Limelite
- MTA
Large sized Lesions (>2MM)

- Mostly dentin
- Dentin has more moisture and less substance
- Open and Closed defects
- Complications & Risks are higher
- Porous, Wet, Dentin Available
- Interproximal concerns
- Increased Occlusal Loading
- Remaining Tooth Structure

What are their advantages?

- Calcium Phosphate and Fluoride
- Easy to place
- Create a Reaction in the tooth.
Seals & Protects the Pulp:
• For Direct & Indirect Pulp Capping
• Light-curable, Radiopaque Liner
• Significant Calcium Release:
 • Stimulates Hydroxyapatite & Dentin Bridge Formation.
ACTIVA BioACTIVE-BASE/LINER (Pulpdent)

- Does not require a bonding agent
- Releases Calcium & Phosphate
- Resin component allows it to bond to other resin based materials

MTA mineral trioxide aggregate

MTA was the bioactive dental material that jump-started the interest in the field. It consists of Portland cement 75%, bismuth oxide 20%, and gypsum 5% and trace amounts of silicon dioxide, calcium oxide, magnesium oxide, potassium sulfate, and sodium sulfate. Portland cement is tricalcium aluminate, dicalcium silicate, tricalcium silicate, and tetracalcium aluminoferrite. The removal of tetracalcium aluminoferrite removes the gray color and creates White MTA.
Biodentine Septodont

- Tricalcium silicate material, which can be used as a bioactive build-up material where large areas of tooth structure are missing
- Used to treat pulp exposures
- Root perforations
- Sets in 10-12 minutes

Bioactive Cements

- Theracem
- Activa Bioactive
- Ceramir
- Biocem Universal
TheraCem by Bisco

- A self cure material made of tricalcium silicate cement and resins. It’s all the similar resins as composite but also has polyethylene glycoldimethacrylate that allows mixing of resins and tricalcium.

Ceramir by Doxa

- Ceramir is a hybrid material consisting of calcium aluminate and glass-ionomer components.
- Ceramir does test higher than other cements for antibacterial properties.

Unosson, Ceramir’s ability to remineralize at the margin. Alhuwayrini tested it as acceptable retention. Jefferies J Clin Dent 2009, Jefferies 3 year test

Pameijer shows micro-leakage results of Ceramir
- Alkaline pH 8.5
- Moisture Tolerant
- Self Sealing
- Apatite Formation
- Insoluble/No Degredation
- Stronger with time
- Semi / Translucent
- Biocompatibility-Excellent
- Bioactivity-Apatite formation
- No silane, conditioning, bonding

Calcium Aluminate/Glass Ionomer Hybrid Cement

Lithium Disillicate (eMax)

- Cleaning w/phosphate scavengers is not necessary
- Silane is contraindicated
- Tooth etching or conditioning is not necessary
- Bonding agent is not needed
Cementation Technique

Zirconia Restorations
- Cleaning w/ phosphate scavengers is not necessary
- Silane is contraindicated
- Tooth etching or conditioning is not necessary
- No bonding agent necessary

Cement Selection

A Bioactive Dental Luting Cement—Its Retentive Properties and 3-Year Clinical Findings

Steven R. Jefferies, MS, DDS, PhD; Cornelius H. Pameljer, DMD, DSc, PhD; David C. Appleby, DMD, MScD, FACP; Daniel Boston, DMD; and Jesper Lööf, PhD

ABSTRACT—A clinical validation study was conducted to determine the performance of a new bioactive dental cement.

Three year recall data yielded no loss of retention, no secondary caries, no marginal discoloration, and no subjective sensitivity. All restorations rated excellent for marginal integrity.
ACTIVA BioACTIVE CEMENT (Pulpdent)
ACTIVA BioACTIVE CEMENT (Pulpdent)

HyperFIL HAp (Parkell)

- couple of Universities testing the product. I have no results to share yet, as the testing is still underway.
HyperFIL HAp (Parkell)
Bulkfill Self Cure Material

- No Bonding agent necessary
- No layering bulkfill
- No polymerization stress
- Bioactive
- Bioavailable
- No sensitivity

Releases/recharges calcium, phosphate and fluoride
Chemically bonds and seals tooth

Microleakage of 4 Composite Materials:
ACTIVA BioACTIVE-RESTORATIVE
(2000 Thermocycles, Number of samples per Group, N = 20)

Source: University testing[^6] (see back page for trademark information)
DO Restoration
Tooth #29
What are the indications for using each type?
Direct Composite Restorations

PLACEMENT TECHNIQUES
What substrate are we treating?

Class I or II

: Composite Preparation

3x Tubule Density Equals Higher Fluid & Increased Difficulty for Bonding

%30 Degrease in Bond Strengths with most bonding systems.

“Adhesive dentistry could be expressed as a simple relationship between bonds and stress. If the bonds can withstand the stress, the restorative technique will be successful.”

Unterbrink and Liebenberg (1999)
“C-Factor” Definition

Configuration Factor:

“The ratio of bonded to un-bonded (free) surfaces”

Feilzer, DeGee, Davidson (1987), University of Amsterdam, ACTA

Lowest Stress

Low Stress

Medium Stress

High Stress

Highest Stress
Factors that compromise bond durability in restorative dentistry

Hydrophilic dentin bonding (1956 -)

Instability of hybrid layers problem may be more severe than we realize

Intact hybrid layers created by a simplified etch-and-rinse adhesive in caries-affected primary dentin partially disappeared after 6 months of intraoral function
Factors that compromise bond durability

Hydrophilic dentin bonding (1956 -)

Demineralizing dentin is like opening the *Pandora’s box*, releasing endogenous enzymes *(Matrix Metalloproteinases - MMPs)* that were trapped within the mineralized dentin matrix.

In the presence of water (such as that derived from water sorption or from adhesives, MMPs (2, 8 & 9) can breakdown collagen fibrils that are not protected by intrafibrillar minerals.

Factors that compromise bond durability in restorative dentistry

Hydrophilic dentin bonding (1956 -)

We challenged that current dentin adhesive designs that incorporate increasing concentrations of hydrophilic monomers are going in the wrong direction.

- Water sorption
- Polymer swelling
- Decline in mechanical properties
- Leaching of hydrolyzed resin components
Bond Degradation

Resin-dentin bonds are not as durable as was previously thought. Microtensile bond strengths often fall 30% to 40% in 6 to 12 months.

BULKFILL COMPOSITES

- Long term research?
 - Dentin & Enamel Replacement
 - Requires one layer
 - 1.6%-2.4% vol. shrinkage
 - 2.3-2.8mpa shrinkage stress
 - Self Cured BulkFill
Effects of Composite Layering on Bond Strengths

Bulk Fill: 11 MPa
Oblique: 17.6 MPa
Vertical: 19.8 MPa
Horizontal: 15.7 MPa
4 Layers (1mm Each): 19 MPa

MPa

1 Layer (4mm)
2 Layers (2mm)
4 Layers (1mm Each)

Operative Dentistry

Today’s resin-based composite materials are excellent. The bulk-fill concept is desired by many dentists; however, CR research shows adequate depth of cure deeper than 3 mm remains questionable for most brands of resin composites and most resin curing lights. Concepts for making Class II resin-based composites predictable and profitable were published in Clinicians Report February 2014.

These CRA research results agree with Dr. Tagami’s results. Tagami’s research showed a prominent bulkfill cures to only 70% on bottom at 4 or 5mm depth of cure.
Internal (Polymerization) Stresses of Composites

“A Simple Pain-Free Adhesive Restorative System by Minimal Reduction & Total-Etching (1993)
Takao Fusayma DDS,
Tokyo Medical & Dental University

Resin Based Restorative Materials

- Resin based adhesive materials absorb moisture over time which causes them to breakdown
- Leaching of mechanical properties
- Accumulation of oral biofilm causes degradation
Oral bacteria Degradation of resin restorations

- Utilizes Giomer Technology to provide antibacterial effect on the surface where it contacts the tooth.
- Less plaque accumulation
Drawbacks of Any Composite Resin

- Material placement techniques
- Variable substrate
- Polymerization stress & shrinkage
- Water absorption
- Hydrophobic bonding agents
- Decreased adhesive bond strength over time
- MMPs and Cathepsins
- Microleakage
- Light polymerization

Glass Ionomers

- Bioactive material
 - affinity to tooth structure. When placing a glass ionomer, a weak acid or conditioner is used to aid in releasing calcium and phosphate ions from the tooth structure. These calcium and phosphate ions combine into the surface layer of the glass ionomer and form an intermediate layer called the interdiffusion zone. This bond layer can be very strong and significantly reduce the microleakage that would occur at the margins of the restoration.
 - Very good fluoride and ion release helps remineralize tooth structure in the remineralization–demineralization process that naturally occurs in the oral cavity.
 - They bond to enamel, dentin, and metals.
"Tooth-colored resin restorations have an average replacement time of 5.7 years due to secondary caries precipitated by bond failure."

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148178/

Fig. 15 – Graph representing the mean annual failure rates per adhesive class, determined according to a systematic review of Class-V clinical trials of adhesives during the period 1998–2004 [2].
Deep Preparations

- Bonding Agent & Flowable composite
- Conventional Glass Ionomer or GI then Composite
 - Fluoride Release
 - High compressive strength
 - Hydrophillic
 - Insoluble
 - True chemical adhesion
 - Minimizes microleakage
 - No sensitivity
 - Acid Base Resistant Zone
 - Decreased gap formation & C Factor
 - Coefficient thermal expansion similar to dentin

Glass Ionomer Sandwich

- Class I, II, III & V posterior restorations
- Open & Closed Sandwich techniques
- Composite replacement
- Amalgam replacement
- High caries risk patients
- Pediatric patients
- Geriatric patients
- Special needs patients
- Long term resistance to microleakage
microleakage testing in vitro using three different bases under composites

T. DUONG, L. TRAN, R. PERRY, G. KUGEL, Special Issues of the Journal of Dental Research. ABSTRACT #0366 > Tufts University School of Dental Medicine, Boston, MA, USA.

Abstract:

Objective: To compare Class II microleakage in vitro of three different bases placed under composite restorations.

Methods: Thirty-six extracted molars were prepared as Class II MOD-RC: 2mm occlusal depth, 2mm axial box depth, 3-5mm gingival box width, and 1mm gingival margin below CEJ. Teeth were randomly divided into three groups of twelve (groups 1-2 = glass ionomer; group 3 = flowable resin): Group 1-Riva Light Cure GI (SDI), Group 2-Riva Self Cure GI (SDI), Group 3-Esthet-X Flow (DENTSPLY Caulk). All groups were primed with Clearfil SE Bond Primer and Bond (Kuraray). All samples were then restored using ICE nano-hybrid Composite (SDI), finished and polished. Restorations were thermocycled for 300 cycles between 5°C and 55°C with a dwell of 30 seconds and then placed in 0.5% aqueous basic fuchsin dye for 24 hours at 37°C. Samples were sectioned mesiodistally and scored independently by two evaluators for microleakage at the occlusal-cavo and proximal-cavo surfaces under a 40x stereomicroscope.

Dye penetration was evaluated using a scoring system:

- 0 = no penetration
- 1 = penetration in enamel/cementum
- 2 = penetration at the axial wall
- 3 = penetration beyond the axial wall

Results: A Kruskal-Wallis test revealed no statistically significant difference in microleakage between the three groups at the occlusal-cavo surface (p>0.05). Group 3 was found statistically different at the proximal-cavo surface. Group 3 yielded the most microleakage at both interfaces while Group 2 showed no axial wall penetration at either interface.

Conclusion: Both light-cured and self-cured glass ionomers were more resistant to microleakage than a flowable resin on both occlusal-cavo and proximal-cavo surfaces.

Glass Ionomer Materials

- Dentsply-ChemFil Rock Restorative
- SDI-Riva LC, light cure HV, Riva SC, self cure HV
- G.C. America-Fuji II LC, Equia Fil (Fuji IX)
- VOCO-Ionolux, Ionofil Molar AC
- 3M/ESPE-Ketac Nano, Photac Fil Quick, Vitremer, Ketac Molar Quick, Ketac Fil Plus
- Shofu-FX II
Glass Ionomer Interface

Dentin Margin

Acid Base Resistant Zone

CARDOSO et al. J Dent 2010

Interface Analysis (TEM)
Resin to Dentin Hybrid Zone

EQUIA FORTE
Caries control/quadrant dentistry
(Class II, III, V & core buildup)
Open Sandwich with glass ionomer & nanohybrid composite

How are you restoring these different preparations?

Bioactive dental material articles
Dental today article is very nice and so is this review article.